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Executive summary 
Management of water quality and ecological state is a responsibility of regional authorities under the 

National Policy Statement for Freshwater Management (NPSFM). To address this responsibility, 

Auckland Council’s (AC) stormwater department ‘Healthy Waters’ is developing the Freshwater 

Management Tool (FWMT), a process-based model, that simulates daily loads of nutrients, heavy 

metals, E. coli, and sediment for 5465 sub-catchments in the Auckland region from instream and 

catchment processes.  

The FWMT does not predict ecological responses to contaminants and could better support decision-

making if it could. A review, conducted by NIWA, previously concluded that models of 

macroinvertebrate responses to the stressors: dissolved inorganic nitrogen (DIN), dissolved reactive 

phosphorous (DRP) and visual clarity (VC1), could be developed using national state of the 

environment (SoE) monitoring datasets. The objective of this study was to develop predictive 

macroinvertebrate models focussing on effects that are manageable and outputs of the FWMT – DIN, 

DRP and VC.  

Two options to model macroinvertebrate stressor responses were proposed: 

▪ Macroinvertebrate index models (MIMs), which model macroinvertebrate indices 

(Macroinvertebrate Community Index [MCI], Quantitative MCI [QMCI] and Average Score 

Per Metric [ASPM]) as functions of the stressors. 

▪ Stacked species distribution models (SSDMs), which model the probability of occurrence 

(PO) of macroinvertebrate taxa as functions of the stressors. 

Macroinvertebrate index models are parameterised to explicitly link the response of NPSFM 

macroinvertebrate attributes to water quality stressors. This gives MIMs direct relevance to the 

NPSFM. However, the link between macroinvertebrate indices and specific water quality stressors is 

unclear owing to a) ambiguity concerning what types of water quality pollution the indices are 

designed to respond to, and b) the use of expert opinion to quantify taxon pollution tolerances used 

in index calculations, which are subject to confounding and bias.  

In contrast, SSDMs yield taxon tolerances from empirical relationships in data, not expert opinion. 

Provided the model is well specified to—as much as is possible—partition confounding factors, 

SSDMs could more accurately capture the response of communities to water quality stressors. 

However, this benefit of SSDMs needs to be evaluated before they can be applied to the FWMT. 

The objectives of this report were: 

1. Using national SoE data, comprehensively evaluate both MIMs and SSDMs as options for 

modelling macroinvertebrate responses to DIN, DRP and VC.  

2. Produce a series of lookup tables that specify thresholds of DIN, DRP and VC linked to a 

probability of occurrence for macroinvertebrate taxa using suitable models identified by 

under Objective 1. 

 
1 Here we use VC as a proxy for suspended fine sediment and consider it a stressor to macroinvertebrate communities sensu NPSFM 
(2020), which worsens as VC decreases, and improves as VC increases. 
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Modelling approach 

The general modelling framework used was Generalised Additive Mixed-Effects Models (GAMMs). 

The mixed-effects (also known us multi-level) modelling approach enabled us to: 

▪ Isolate the effects of primary, management interest—effects of DIN, DRP and VC—from the 

effects of numerous other spatial and temporal contingencies on those effects, but without 

having to resort to highly complex models that run a greater risk of being overfitted to 

training data. 

▪ Generate predictions of stressor effects that are more generalisable than those arising from 

models that include numerous parameters that explicitly account for all variables that 

(supposedly) capture spatial and temporal contingencies. 

▪ Account for correlations among observations within sites, climate zones and years—

correlations within sampling units than can bias model outputs. 

▪ Control for spatial and temporal imbalances in sampling effort that can bias model 

outputs—imbalances that are prevalent in the monitoring data used in this study. 

Steps involved in SSDM and MIM fitting were identical, with only minor adjustments to 

accommodate different distributions of response variables (e.g. Gaussian vs. Bernoulli). The MIMs 

and SSDM were then compared using multiple criteria: 

1. Model fit – did the models meet the statistical assumptions underlying them? Was there any 

bias in the estimated stressor effects? 

2. Model accuracy – how much uncertainty was associated with the model predictions? 

3. Sensitivity – how sensitive were model predictions to each stressor? 

4. Ecological plausibility – were model consistent with our ecological understanding? 

Stacked species distribution model 

SSDM evaluation 

GAMMs were parameterised for 104 macroinvertebrate taxa comprising the SSDM. Following our 

four criteria above we concluded: 

▪ No major violations of statistical assumptions underlying the SSDM were observed, and the 

predicted stressor effects were unbiased. 

▪ Stressor effects were selected for the final models of 68 taxa, with most involving additive 

or interactive multi-stressor effects. 

▪ Predictive accuracy of GAMMs for individual taxa of the SSDM was generally low. On 

average, <10% of the internal variance in taxon PO was attributed to the combined effects 

of each stressor.  

▪ Sensitivity of the SSDM to each stressor was high. The PO for some taxa varied 100% over 

observed nutrient and sediment gradients. 
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▪ The direction and form of stressor responses of taxa predicted by the SSDM were 

consistent with our understanding of the ecology of individual taxa. Stressor responses for 

many taxa involved complex multi-stressor interactions, consistent with empirical 

observations. 

Stressor limit lookup tables derived from the SSDM 

Biological Extirpation Analysis using Monte-Carlo simulations of the SSDM was used to derive 

stressor limits required to achieve several macroinvertebrate targets. The analysis estimated 

thresholds of DIN, DRP and VC required to curtail extirpation to different target states (extirpation of 

≤1%, 2.5%, 5% and 10% of the taxa in the modelled macroinvertebrate community).  

Multi-stressor effects had significant and strong effects on taxon extirpation. Single-stressor 

thresholds required to achieve specific macroinvertebrate targets were strongly dependent on levels 

of other stressors.  

Given the strength of these multi-stressor effects, stressor thresholds were calculated for three 

multi-stressor scenarios (Figure 1-1): 

▪ An optimistic scenario, which estimated the thresholds of each stressor required to achieve 

macroinvertebrate targets when levels of the other two stressors are at the low end of the 

observed distributions of stressor data (either through effective stressor reductions, or 

naturally low concentrations of those stressors). 

▪ A pessimistic scenario, which estimated the thresholds of each stressor required to achieve 

macroinvertebrate targets when levels of the other two stressors are high and of the 

observed distributions of stressor data (either as a consequence of anthropogenic 

pollution, or naturally high concentrations of those stressors). 

▪ A typical scenario, which estimated the thresholds of each stressor required to achieve 

macroinvertebrate targets when levels of the other two stressors are close to the medians 

of the observed stressor data (and are therefore characteristic of a ‘typical’ river within the 

training data). 
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Figure 1-1: Thresholds for a) DIN, b) DRP and c) VC required to limit community extirpation to 1%, 2.5%, 
5%, or 10% (CTX,crit), for optimistic (blue), pessimistic (red) and typical (orange) multi-stressor scenarios.   The 
typical, pessimistic and optimistic multi-stressor scenarios show thresholds for each stressor while remaining 
stressors vary about their median, worst or least stressful conditions, respectively. Thresholds are repeated in 
table form in Appendix G. 

To achieve a specific macroinvertebrate target state, thresholds placed on one water quality stressor 

may have to be much more stringent (i.e., pessimistic), when/where the states of the other stressors 

are also poor. However, such thresholds may be relaxed (i.e., optimistic) if the states of all stressors 

are improved in concert. 

Macroinvertebrate index model fitting and evaluation 

MIMs were developed and evaluated for MCI, QMCI and ASPM. Following our four criteria above we 

concluded: 

▪ Predictive accuracy of the MIMs was also low. Less than 10% of the internal variance in MCI, 

QMCI and ASPM were attributed to the combined stressor effects. 

▪ Macroinvertebrate indices were insensitive to all stressors considered. Index insensitivity was 

such that MCI and QMCI did not shift beyond a single NPSFM band as stressors worsened. 

This indicates it would not be possible to achieve macroinvertebrate objectives – as defined 

in the NPSFM – by reducing DIN, DRP or increasing VC. 

▪ The insensitivity of macroinvertebrate attributes was likely a result of the taxon-specific 

tolerance scores – derived from expert opinion – being poorly related to observed taxon-

specific tolerances derived from data (our SSDM).  

▪ MCI, QMCI and ASPM are not suitable indicators of the effects that DIN, DRP and VC have on 

macroinvertebrate communities. Stressor thresholds were therefore not developed using the 

MIMs.  
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Conclusions 

Despite the relevance of MIMs to central policy, we found no evidence that they are effective for 

understanding or managing the effects of DIN, DRP and VC on macroinvertebrate communities. By 

contrast, we presented a biological extirpation analysis based on an SSDM that, while arguably being 

less directly relevant to central policy, should be more effective for managing multiple water quality 

stressors to meet ecological objectives.  

Next steps should focus on application of the SSDM to meet ACs requirements for simulating 

macroinvertebrate responses to contaminant scenarios arising from the FWMT: 

1. Whether SSDM forecasts should consider only a subset of taxa most relevant to the Auckland 

region. 

2. What type of simulation of the SSDM would best capture whole-community response to 

alternative water quality scenarios arising from application of the FWMT. 

3. How to calibrate VC as a function of total suspended solids (TSS; output of the FWMT) such 

that we may simulate macroinvertebrate response to TSS? 

4. Determine the amount of SSDM uncertainty that is acceptable, given the intended use of the 

FWMT, and whether additional FWMT variables should be included into the SSDM. 

1 Introduction 

1.1 Background 

Management of water quality and ecological state is a responsibility of regional authorities in New 

Zealand under the National Policy Statement for Freshwater Management (NPSFM; MFE 2020). Pre-

emptive of NPSFM regulatory implementation, Auckland Council’s stormwater department, ‘Healthy 

Waters’, is developing a regional-scale catchment management and operational decision-support 

tool, the ‘Freshwater Management Tool’ (FWMT) (Auckland Council 2021a-c). The FWMT simulates 

daily loads of nutrients, heavy metals, E. coli, and sediment for 5465 sub-catchments in the Auckland 

region from instream and catchment processes.  

The FWMT is used to forecast how changes in catchment hydrology and contaminant sources affect 

contaminant concentrations in the water column of rivers. Contaminant sources include point 

sources (e.g., engineered overflow contributions from reticulated wastewater networks) and 

nonpoint sources (e.g., discharge from engineered stormwater networks including various 

residential, commercial and industrial surfaces, rooves, roads, unpaved urban surfaces, septic areas, 

horticultural, pastoral, exotic and native forested areas, broader open space and streambank 

erosion). 

The FWMT will allow Healthy Waters to model the movement of water and operationally-relevant 

contaminants through rural and urban catchments, identify critical contaminant sources, estimate 

the loads and concentrations of contaminants in receiving environments, infer their likely impacts on 

ecosystem health, simulate the effectiveness of different management options for mitigating those 

impacts, estimate the cost of achieving desired management outcomes, and determine where those 

costs are likely to fall.  
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This information will guide Healthy Waters as it develops action plans for achieving water quality 

targets in Auckland’s rural and urban catchments, and as it makes operational, asset management, 

and investment decisions within the context of its stormwater network discharge consent.  

Importantly, the FWMT does not currently predict instream ecological responses to contaminants. 

Healthy Waters has identified a need to be able to contextualise and predict changes to ecological 

measures changes in operational contaminants (“stressors”).  

A critical review of options to model ecological responses to contaminant loads was conducted by 

NIWA (White et al. 2022). The review concluded that: 

▪ There are limited time-series pairing ecology with contaminant loads within the Auckland 

region. Ecological models must therefore be built using national data sets. 

▪ Linking FWMT output to models of periphyton and fish is not possible due to data 

limitations, and/or poor predictive performance of existing models in the Auckland region. 

▪ Sufficient national data are available to model macroinvertebrate responses to the stressors 

dissolved inorganic nitrogen (DIN), dissolved reactive phosphorous (DRP), and visual clarity 

(VC). 

Two options to model macroinvertebrate responses to those stressors with sufficient data (DIN, DRP 

and VC) were identified:  

▪ Macroinvertebrate index models (MIMs) , which model macroinvertebrate indices (e.g., 

macroinvertebrate community index [MCI], Quantitative MCI [QMCI] or Average Score Per 

Metric [ASPM]) as statistical functions of the stressors. 

▪ Stacked species distribution models (SSDMs), which model the probability of occurrence 

(PO) of individual macroinvertebrate taxa as statistical functions of the stressors. 

Trade-offs were identified in both approaches (Table 1-1), which will now be discussed. 

Table 1-1: Strengths and weaknesses of macroinvertebrate index models (MIMs) and stacked species 
distribution models (SSDMs).  

Strengths/Weaknesses MIMs SSDMs 

Strengths ● Policy-relevant out-of-the-box 

● Simple to implement 

● Easy to communicate to stakeholders 

● Stressor responses not confounded 

● Flexible applications 

Weaknesses ● Taxon tolerance scores may confound 

stressor responses 

● Limited applications 

● Very rare taxa cannot be modelled 

● Complex to implement 

 

 

1.2 Macroinvertebrate index models 

The main strength of MIMs is that they are parameterised to explicitly link the response of NPSFM 

macroinvertebrate attributes with water quality stressors. The MCI, QMCI and ASPM (Stark and 

Maxted 2007, Collier 2008) are attributes in the National Policy Statement for Freshwater 
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Management (NPSFM) requiring actions. Specifically, Clause 3.13 of the NPSFM requires councils to 

set exceedance thresholds for DIN and DRP that achieve target index states. Macroinvertebrate index 

models could therefore be directly used to determine how catchment planning scenarios affect 

NPSFM invertebrate attributes. 

Macroinvertebrate index models are also simple. They aggregate a complex multivariate system – 

the ecological community - into one metric. Each taxon in the community is assigned a tolerance 

score representing its pollution tolerance. These scores are averaged among taxa, and in the case of 

ASPM, weighted by EPT (Ephemeroptera, Plecoptera, Trichoptera) membership, to calculate the 

indices. Communities comprised of taxa with high pollution tolerance are assumed to indicate 

environmental degradation and poor ecosystem health. 

However, this simplicity is also a drawback. Taxon tolerance was broadly defined as tolerance to 

‘pollution’, ‘organic pollution or enrichment’ and ‘nutrient enrichment’ (Stark 1985, Stark and 

Maxted 2007). However, it is unclear how tolerance scores relate to particular contaminants 

(Clapcott et al. 2017) (e.g., DIN, DRP, VC). If tolerance scores do not relate well to a particular 

stressor, the indices may not accurately represent the effect of the stressor on the community. 

Because the tolerance scores were based on expert opinion and not quantitatively linked to any 

particular stressor2, the risk that these indices fail to characterise community responses to specific 

stressors is high. 

A second issue is that each taxon is assigned only a single tolerance score. This assumes that each 

taxon has the same tolerance to all stressors that the index is applied to. However, research shows 

that nutrients and sediment often affect macroinvertebrate communities in complex, interactive 

ways (Matthaei et al. 2010; Piggott et al. 2012; Piggott et al. 2015), suggesting this assumption is too 

simplistic. Failure to distinguish tolerance to different stressors could render indices insensitive to 

multi-stressor interactions. 

1.3 Stacked species distribution models 

The strengths and weaknesses of SSDMs directly contrast those for MIMs (Table 1-1). Stacked species 

distribution models yield taxon tolerances from empirical relationships in data. Provided the model is 

well specified to—as much as is possible—partition confounding factors, SSDMs can disentangle 

multi-stressor effects on communities (Schipper et al. 2014). These features of SSDMs may mean 

they more accurately capture the response of communities to water quality stressors. By extension, 

SSDMs arguably present a more scientifically-defensible means of predicting the response of 

communities to changes in water quality. 

However, SSDMs are complex. Rather than fitting a single model to an index-stressor data set, SSDMs 

require separate models for each taxon, of which there may be many. Additional algorithms are 

required to aggregate taxon-specific responses into a whole-community response. Several 

approaches are available, including Biological Extirpation Analysis (Cormier and Suter 2013), Gradient 

Forests (Wagenhoff et al. 2017), or simple model stacking (Schipper et al. 2014). However, these 

algorithms and outputs may be difficult to communicate.  

 
2 Tolerance scores were originally assigned by Stark (1985) according to distribution of taxa amongst sites ranked into three pollution 
classes in the Taranaki ring plain. However, pollution classes were assigned to each site based on expert opinion, and not according to how 
sites differed quantitatively in some aspect of pollution (e.g., DIN). Subsequent changes/additions to tolerance scores were based on 
expert opinion or by reconstitution of those original scores (Stark and Maxted 2007), such that they remain informed entirely by expert 
opinion. 



 

14 Development of macroinvertebrate response models for the FWMT 

Nevertheless, this flexibility, is also a key SSDM strength. Using SSDMs we could: 

▪ More objectively estimate stressor-specific taxon tolerances from data and develop 

stressor-specific indices. 

▪ Simulate the effects of stressors on macroinvertebrate community dynamics. 

▪ Quantify the interactive effects of multiple stressors. 

▪ Isolate taxa of cultural, functional, or regional importance to base decisions on. 

Despite the strengths of SSDMs, they remain rarely applied in freshwater management in New 

Zealand. The benefits of SSDMs for linking with the FWMT are potentially great, but need testing. 

This requires testing of both the SSDM itself, as well as ways to aggregate the SSDM to predict 

stressor responses of the whole community. 
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1.4 Report objectives 

The objectives of this report are two-fold. The first objective was to comprehensively evaluate both 

MIMs and SSDMs as options for modelling macroinvertebrate community responses to changes in 

operationally relevant stressors: DIN, DRP, and VC (noting only DIN and DRP are simulated by the 

FWMT Stage 1 – the brief from HW was to focus on sediment and nutrient operational contaminants 

[and forms thereof] but without constraining the exercise only to those simulated currently by the 

FWMT).  

The models were evaluated using multiple criteria: 

▪ Model fit – did the models meet the statistical assumptions underlying them? Was there 

any bias in estimated stressor effects? 

▪ Model accuracy – how much uncertainty was associated with model predictions? 

▪ Sensitivity – how sensitive were model predictions to each stressor? 

▪ Ecological plausibility – were models consistent with our ecological understanding?  

Our second objective was to use the best model identified from objective one, to produce a series of 

lookup tables that specify how changes in DIN, DRP and VC change macroinvertebrate state, which 

can be compared against FWMT scenario outputs for changing contaminant regimes instream. 

1.5 Report structure 

Sections of this report are structured as follows: 

Section 2 details the data used for modelling. It also details the rationale for spatial and temporal 

partitioning of variance, used to control for confounding processes in MIMs and SSDMS. 

Section 3 details the methods and results used to fit and evaluate the SSDM. 

Section 4 develops and evaluates an approach to aggregate and predict community stressor 

responses using the SSDM. We use it to evaluate macroinvertebrate community extirpation 

responses to stressors and multi-stressor interactions predicted by the SSDM. We use the approach 

to develop stressor thresholds required to limit macroinvertebrate extirpation to specific targets, 

under different multi-stressor management scenarios. 

Section 5 presents the methods and results used to fit and evaluate index-stressor responses 

predicted by the MIMs. We also evaluate stressor tolerance assumptions made by MCI and QMCI 

using the SSDM. 

Section 6 summarises sections 3-5 with respect to the report objectives and recommends next steps. 
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2 Data 

2.1 Data sources 

2.1.1 State of the environment monitoring data 

The data used in this report come from two sources. The first consists of national State of the 
Environment (SOE) monitoring data collected by regional councils. These data were compiled 
previously by Depree et al. (2017) to develop suspended sediment thresholds for the NPSFM. They 
comprised 16163 paired annual stressor-macroinvertebrate observations taken between 2006-2016 
among 300 sites. Macroinvertebrate samples were collected using semi-quantitative kick-net 
methods as detailed in Stark et al. (2001). DIN, DRP and VC samples were collected monthly using 
standardised protocols and were summarised such that they represented the median observation of 
the 12 months prior to each macroinvertebrate sample. 

The spatial design of SOE monitoring programmes varied between each regional council but are 
biased towards wadeable rivers and catchments dominated by pasture. Meanwhile variable 
availability of VC among regions and years mean that SOE data are poorly balanced (Figure A-1). In 
particular, Auckland, Gisborne, Tasman, Nelson and Marlborough were underrepresented as these 
councils did not monitor VC over the period in Depree et al. (2017). The FWMT produces forecasts of 
total suspended solids (TSS) as a measure of suspended sediment. However, TSS data are not 
routinely monitored by Regional Councils (Dupree et al. 2017). Nevertheless, as noted by 
Montgomery et al. (2022), FWMT forecasts of TSS could be utilised provided the appropriate models 
describing relationships between VC and TSS were developed. We therefore considered VC essential 
for this study.  

2.1.2 National River Water Quality Network monitoring data 

The second source consisted of data collected by the NIWA National River Water Quality Network 
(NRWQN). These data comprised 16023 annual stressor-macroinvertebrate observations for 63 sites 
taken between 1990-2019. Macroinvertebrate samples were collected using quantitative surber 
sampling protocols (Smith and McBride 1990). Stressor samples were taken monthly using 
standardised protocols (Smith and McBride 1990). These data were processed following the same 
procedures described by Depree et al. (2017) and then combined with the SOE data. We restricted 
NRWQN data to 1990-2019 as there was a change to resolution of taxa recorded in samples after 
2019, which resulted in a spurious increase in new taxa. 

The NRWQN was designed by NIWA to measure water quality status and trend in nationally 
important rivers and is therefore slightly biased towards larger rivers (Smith and McBride 1990). 
However, the data are better balanced among regions and years than the SOE data (Figure A-1). The 
sites are also better balanced among catchments dominated by upstream pasture and indigenous 
forest.  

2.2 Spatial and temporal partitioning of data 

Our objective was to partition correlated variance among sites, years, and regions into random 

parameters in MIMs and SSDMs. We had several reasons for doing so. Firstly, this would account for 

non-independence and correlations of observations at each grouping level (Pinheiro and Bates 2000). 

The data mostly consisted of annual repeated measures within each site of up to 30 years, with only 

43 out of 363 sites containing single observations. Including random parameters for each site would 

ensure the assumption of sample independence was met in subsequent models (Pinheiro and Bates 

 
3 The number of complete samples including DIN, DRP, VC and macroinvertebrate observations after censored data treatments. 
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2000). This would also help account for effects associated with spatial differences among sites, such 

as altitude, that might otherwise confound stressor effects (White et al. 2022). 

Secondly, we wished to control for interannual changes in climate, and subsequent effects on water 

temperature and flow that might confound stressor effects. For this purpose, we partitioned all sites 

into six different climate zones as defined by Mullen (1995) (Figure 2-1). Climate zones (hereafter, 

CZ) are defined by how they differ in response to the El Nino Southern Oscillation (ENSO). Climate 

zone boundaries are largely determined by the interaction of mountain chains with mean westerly 

flow, which drive differences in temperature and precipitation among zones during ENSO phases 

(Mullan 1995, Kidson and Renwick 2002). Including random parameters for each CZ, and year within 

each CZ, would ensure that confounding interannual and periodic climate effects were accounted for 

in subsequent models.  

 

Figure 2-1: Distribution of sites among climate zones and sources.  
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An additional reason for partitioning data by site, CZ and year was to account for spatial and 

temporal sample biases. Although the data were better balanced when partitioned by CZ, there 

remained strong spatio-temporal biases in the data (Figure A-2). This was primarily caused by 

differences in data availability among regional councils. Given the potential biogeographic 

differences in taxon distribution, these sample biases might confound stressor effects if not 

otherwise controlled for.  

2.3 Macroinvertebrate indices 

We followed the National Environmental Monitoring Standards (NEMS 2022) macroinvertebrate 

guidelines for calculating MCI, QMCI and ASPM for each sample. The MCI was calculated as: 

𝑀𝐶𝐼 =
∑ 𝑎𝑖
𝑇
𝑖=1

𝑇
× 20 (1) 

where, T is the total number of scoring taxa in the sample and ai is the tolerance score of taxon i. The 

MCI is therefore simply the tolerance score of the average taxon in the sample. 

The QMCI was calculated as: 

𝑄𝑀𝐶𝐼 =∑(𝑛𝑖 × 𝑎𝑖)

𝑇

𝑖=1

 (2) 

where, ni is the relative abundance of taxon i in the sample, calculated as the total abundance of 

taxon i divided by the total abundance of all taxa in the sample. Note that equation (2) differs slightly 

from that presented in NEMS (2022) which uses taxon counts as opposed to relative taxon 

abundance used here, however both formulae yield the same values for QMCI. For MCI and QMCI we 

used the hard bottomed (HB) tolerance scores and taxa as defined in the macroinvertebrate NEMS 

(2022) guidelines. 

The ASPM was calculated as the average of the metrics MCI, EPT richness and percent EPT 

abundance, whereby EPT richness is the total number of taxa belonging to the orders 

Ephemeroptera, Plecoptera, and Trichoptera (EPT), and percent EPT abundance is the number of EPT 

individuals divided by the total number of individuals in the sample. Each metric was range-

standardised as Xs = (X – Xmin)/(Xmax – Xmin), where Xs and X were scaled and unscaled metric values, 

respectively, and Xmin and Xmax the minimum and maximum unscaled metric values among all 

samples. This range-standardisation results in each metric having range [0,1]. 

2.4 Treatment of censored stressor data 

Censored stressor values – measurements that are below or above detection limits – were present in 

the water quality data. Treatment of such data in New Zealand environmental reporting is often 

done by imputation. This involves approximating the values for censored data that are consistent 

with the uncensored data using various procedures (Helsel 2012). However, these imputation 

procedures do not preserve the covariance that occurs between uncensored data. Failure to 

preserve the (uncensored) covariance may bias mathematical relationships between stressors and 

dependent variables at the upper and lower domains of each stressor. Rather than risk introducing 

such artefacts, we chose to remove all samples with censored values for any stressor prior to model 

fitting (245 samples). We also restricted any predictions made from models to the lower 2.5% and 
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upper 97.5% quantiles of the stressor distributions, to reduce leverage effects in the tails of covariate 

distributions. 
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3 Stacked species distribution model fitting and evaluation 

3.1 Summary 

The objective of this section was to fit and evaluate the stacked species distribution model (SSDM).  

Generalised additive mixed-effects models were fitted to the probability of occurrence of 104 taxa and the 

fitted stressor responses of each taxon were evaluated. 

Conclusions from this section were: 

▪ No major violations of statistical assumptions underlying the SSDM were observed and predicted 

stressor effects were unbiased as evinced by residual examination. 

▪ Predictive accuracy of models of individual taxa of the SSDM was generally low. This means there 

was a large amount of uncertainty associated with predicting taxon PO based solely on the effects 

of DIN, DRP and VC. 

▪ Sensitivity of the SSDM to each stressor was high and indicated that observed variation in nutrient 

and sediment enrichment would be sufficient to cause extirpation of sensitive taxa.  

▪ The direction and form of taxon-specific responses to stressors predicted by the SSDM were 

consistent with our understanding of the ecology of each taxon. Many taxon-specific stressor 

responses involved complex multi-stressor interactions consistent with empirical observations. 

3.2 Methods 

3.2.1 SSDM parameterisation and selection 

Generalised additive mixed effects models (GAMMs) were used to model spatial and interannual 

changes in probability of occurrence (PO)4 of each macroinvertebrate taxa in the SSDM. The 

taxonomic resolution used to define a taxon was equivalent to that used to calculate 

macroinvertebrate indices (Section 2.3). All GAMMs were fitted using the gamm4 package (Wood 

and Scheipl 2017). 

We sought relatively simple model parameterisations of how stressors drove variation in PO of each 

taxon. The stressors DIN, DRP and VC entered each model as fixed effects, while site, climate zone 

(CZ) and year of observation nested within CZ entered as random intercepts. Following Dormann et 

al. (2013), we checked for collinearity among fixed effects, but did not find any correlations > 0.7 

(Figure B-1). 

We used an information-theoretic approach with Akaike’s information criterion (AIC; Akaike, 1974) 

to select the most parsimonious model from a series of 12 candidate models (Burnham & Anderson, 

2002) for each taxon. The models were mostly nested and assessed hypotheses on the additive and 

interactive effects of each stressor (Table 3-1). The final model for each taxon was selected as that 

minimising AIC, which is the most parsimonious model that minimised under- and over-fitting.  

 
4 Probability of occurrence here being defined as the probability of a species being present in a sample (which could be a composite of 
multiple kick-net or surber sub-samples) taken during a specific year from a stream reach of undefined spatial extent, among all such 
samples used for analysis. Models fitted for all species used the full national complement of samples. 
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Prior to model selection and testing, we scaled all stressor variables, S, such that 0≤S≤1, according to 

S = (S -min[S])/(max[S]-min[S]), whereby min[S] and max[S] are the minimum and maximum values of 

S, respectively, in the data. This allowed us to use isotropic smoother interactions for stressor 

variables in the GAMMs. These are less computationally intensive but yield responses equivalent to 

anisotropic smoothers (Wood 2017). 

We set the basis dimension used to represent each GAMM smooth term (i.e., number of smoother 

knots) to 1K for univariate smoothers, 2K for bivariate smoother interactions, and 4K for multivariate 

smoother interactions, where K = 6. The basis dimension restricts the maximum complexity of 

smoother non-linearity considered during model cross-validation. Preliminary model selection of five 

representative taxa indicated that setting K=6 was sufficient to capture the complexity of smoother 

non-linearity (Appendix C).  

Models were only fitted to macroinvertebrate taxa with at least 6% prevalence (i.e., present in at 

least 6% of sites monitored). This prevalence cut-off was based on research showing model 

predictive performance is overestimated for taxa below 6% prevalence (Barbet-Massin et al., 2012). 

This rule resulted in 104 taxa being eligible for modelling out of a total of 182 taxa present in the 

data. 

Table 3-1: Description of GAMM models used to model PO of each taxon in the SSDM.  

Number Name Formula Description 

1 NULL POijt=α+αi+αj+αjt+ε Probability of occurrence (POijt) of 
a taxon during Y t within CZ j at 
SID i is a function of the 
population-level PO (α) + 
deviation induced by SID i (αi) + 
deviation induced by CZ j (αj) + 
deviation induced by Y t within CZ 
j (αjt) + error (ε). The factor α is 
fixed while αi, αj and αjt are 
random. 

2 DIN POijt=α+αi+αj+αjt+f(DINit)+ε As for 1, but including the effect 
of DIN at SID i during Y t entering 
as a fixed effect smoother.  

3 DRP POijt=α+αi+αj+αjt+f(DRPit)+ε As for 1, but including the effect 
of DRP at SID i during Y t as a fixed 
effect smoother. 

4 VC POijt=α+αi+αj+αjt+f(VCit)+ε As for 1, but including the effect 
of VC at SID i during Y t as a fixed 
effect smoother. 

5 DIN+DRP POijt=α+αi+αj+αjt+f(DINit)+ f(DRPit)+ε As for 2, but including DRP as an 
additive smoother. 

6 DIN+VC POijt=α+αi+αj+αjt+ f(DINit)+ f(VCit)+ε As for 2, but including VC as an 
additive smoother. 
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Number Name Formula Description 

7 DRP+VC POijt=α+αi+αj+αjt+f(DRPit)+ f(VCit)+ε As for 3, but including VC as an 
additive smoother. 

8 DIN:DRP POijt=α+αi+αj+αjt+f(DINit,DRPit)+ε As for 5, but including the 
interaction between DIN and DRP 
as a smoother. 

9 DIN:VC POijt=α+αi+αj+αjt+f(DINit,VCit)+ε As for 6, but including the 
interaction between DIN and VC 
as a smoother. 

10 DRP:VC POijt=α+αi+αj+αjt+f(DRPit,VCit)+ε As for 7, but including the 
interaction between DRP and VC 
as a smoother. 

11 DIN+DRP+VC POijt=α+αi+αj+αjt+f(DINit)+ f(DRPit)+f(VCit)+ε As for 5, but including effect of VC 
at SID i during Y t as a smoother. 

12 DIN:DRP:VC POijt=α+αi+αj+αjt+f(DINit,DRPit,VCit)+ε As for 11, but including the 
interaction between DRP, DIN and 
VC as a smoother. 

3.2.2 SSDM fit 

The SSDM makes several key assumptions regarding the effects of each stressor on PO of each taxon. 

These assumptions include a) that the data arise from a Bernoulli distribution (i.e., the response is 

either a 0 or 1), b) that the model residuals are independent (i.e., independent in space and time) 

and c) that the fixed effects are not confounded by collinearity. These assumptions were addressed 

by fitting models with a Bernoulli distribution, using random effects to account for correlations and 

non-independency within sites, years, and CZs, and by only including fixed effects that were 

uncorrelated. 

If these assumptions were correctly addressed, the quantile residuals of the SSDM should be 

normally distributed and homogeneous with respect to model predictions and the fixed covariates 

(Dunn and Smyth 1996). We calculated and inspected model quantile residuals using the DHARMa 

package (Hartig 2022). Problems with model fit were identified as departures from linearity in 

residual QQ plots of the quantile residuals, and heterogeneity in the quantile residuals with regards 

to the predicted values (residual versus predicted plots) and observed values of each stressor 

(residual versus stressor plots). 

3.2.3 SSDM predictive accuracy 

We used 10-fold cross-validation to examine the accuracy of predictions of the final model for each 

taxon. This involved splitting the full data set into 10 testing folds, then iteratively re-training the 

model after withholding each fold, and testing the predictive accuracy on the withheld fold. We 

wished to test model transferability in space, so we used the groupdata2 package (Olsen, 2017) to 

ensure no leakage of data from individual sites across folds.  

We calculated the predictive accuracy of the final model on each fold using the area under the 

receiver operator characteristic curve (AUC). This statistic measures the accuracy of the model 

predictions relative to the observed data. An AUC of 0.5 indicates the model predicts taxon 
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presences and absence no better than random chance, while AUC approaching 1 indicates perfect 

discrimination. Values <0.5 indicate the model performs worse than the NULL under cross-validation. 

Predictions made on each fold used only the fixed effects parameters thus ensuring predictive 

accuracy was evaluated for DIN, DRP and VC effects only, excluding any random parameters. 

We also calculated pseudo-R2 for each taxon as a measure of the amount of variance explained by 

the fixed stressor effects, relative to the random effects (Tjur, 2009). Pseudo-R2 is the difference 

between the average predicted PO for observed presences and that of the observed absences of the 

training data and is interpreted as the coefficient of discrimination for models of Bernoulli distributed 

data. We calculated pseudo-R2 from the final model of each taxon fit to the full data set (i.e., internal 

pseudo-R2), while iteratively excluding each random effect from the prediction. This allowed us to 

calculate the contribution of each model term on pseudo-R2. 

3.2.4 SSDM stressor sensitivity 

As a final step, we calculated the absolute and relative sensitivity of each taxon’s PO to each stressor 

as predicted by the SSDM. Absolute sensitivity was defined as the range in predicted PO of a taxon 

across the domain of a stressor (i.e., lower 2.5% and upper 97.5% stressor observations). Relative 

sensitivity was defined as absolute sensitivity divided by the maximum PO for that taxon.  

Relative sensitivity was used to account for differences in rarity among taxa. For example, the rarest 

taxon modelled may have low maximum PO, and therefore low absolute sensitivity, but still show 

high sensitivity relative to their maximum PO. Meanwhile, absolute sensitivity may indicate a 

sensitive taxon that has high influence on overall community dynamics (i.e., a sensitive common 

taxon). Both relative and absolute sensitivity was calculated from each taxon’s partial response to 

each stressor while holding all other stressors at their median observed values and excluding random 

effects. These partial stressor responses were also inspected to assess the general direction and form 

of taxa-specific responses, as well as ecological consistency. 

Note that the sensitivity analyses were used as an additional step to analyse the absolute and 

relative magnitude of stressor effects on taxon PO. However, these analyses did not inform model 

selection (i.e., selection of fixed effects described in Section 3.2.1), nor selection of taxa to be 

considered in the SSDM. All taxa meeting the 6% prevalence threshold (n=104), whose final models 

passed residual diagnostic inspections, were included for all analyses throughout this report, 

including those whose selected final models were the NULL. 

3.2.5 Assumptions regarding stressor effects 

A key assumption made by the SSDM is that stressor effects reflect both indirect and direct effects of 

the stressor on taxon presence. Direct effects include the stressors’ effect on physiological 

homeostasis (i.e., toxicity). Indirect effects refer to the stressors’ effect on taxon PO through some 

indirect pathway, such as via its’ effect on a key resource (e.g., periphyton, prey). Following, MFE 

(2022), we assumed that nutrient effects measured here reflected primarily indirect effects via 

stimulation of periphyton growth. Increased VC is also likely to have similar indirect effects on 

periphyton growth by increasing solar exposure and stimulating photosynthesis. However, VC, as a 

proxy for suspended sediment, may also have strong direct effects on certain taxa, such as filter 

feeders, whose ability to feed may be impeded by reduced VC. Nevertheless, the SSDM cannot 

distinguish between such mechanisms. Indirect pathways involve more ecological contingencies and 

are therefore less certain. We therefore ensured that stressor effect uncertainty is fully factored into 

all simulations made by the SSDM to account for this. 
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3.3 Results 

Given the large number of models comprising the SSDM (104 taxa), we present only the key 

summaries of results here or in the appendices. Detailed results for each taxon in the SSDM, 

including model selection, residual diagnostics, model accuracy and partial plots are presented in an 

html file accompanying this report (SSDM_Evaluation.html), which can be opened using any internet 

browser. 

3.3.1 SSDM parameterisation and selection 

The most frequently selected final model among macroinvertebrate taxa was the NULL, which was 

selected for 36 taxa (Figure 3-1, Table D-1). The remaining 68 taxa included 1-3 stressors in their final 

models. If two or more stressors were included in the same model, they were usually involved in 

interactions (:) as opposed to additive effects (+). Model selection results for individual taxa are 

presented in the SSDM_Evaluation.html file. 

 

Figure 3-1: Distribution of final models among taxa modelled.  

3.3.2 SSDM fit 

Residual diagnostics indicated that the models were well fitted for most taxa in the SSDM (i.e., 

residual QQ plots were linear, and residuals were homogeneously distributed about 0.5 in residual 

versus predicted plots (see the SSDM_Evaluation.html fille for details). This means that the 

assumptions made by the SSDM generally met, and stressor effects were unbiased for most taxa in 

the SSDM. 

Non-linear residual QQ plots were observed for some taxa, with observed residuals being either 

above (e.g., Aoteapsyche, Deleatidium) or below (e.g., Maoridiamesa, Ostracoda) that expected. This 

indicates that model fits were biased slightly higher (i.e., residuals >0.5) or lower (i.e., residuals <0.5) 

than observations in the training data, respectively. However, for most of those taxa (e.g., 
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Maoridiamesa), these biases were not related to any stressor (residuals versus stressor plots). This 

means the stressor effects were generally unbiased, and well-fitted.  

For a minority of taxa (e.g., Aoteapsyche, Deleatidium, Tanytarsini), there were some patterns in the 

residuals with respect to the stressors. Such patterns may reflect underfitting of the stressor 

smoother parameters at subsets of the stressor domains (i.e., the smoother non-linearity was not 

sufficiently complex) (Zuur et al. 2009, Landwehr et al. 1984). However, given that smoother 

complexity was determined via cross-validation, such biases likely reflect noise in the data, rather 

than some true effect of the stressor that was not captured by the smoother.  

3.3.3 SSDM predictive accuracy 

Cross-validated predictive accuracy of models of individual taxa was generally low for most taxa (AUC 

< 0.6), but good for some taxa (AUC>0.7) (Figure 3-2a). Pseudo-R2 of stressor effects was also low, 

reaching up to only 0.12 for one taxon (Figure 3-2b). More variation was attributed to the random 

effects particularly site, followed by year within CZ, and CZ. Pseudo-R2 of the full model (including 

fixed and random effects) ranged 0.02 – 0.67 and was generally comparable to previous random 

forest SSDMs on similar data (Wagenhoff et al. 2017). This means that SSDM predictions to each site 

were associated with very high uncertainty. 

 

Figure 3-2: Distribution of a) AUC scores among taxa and b) pseudo-R2 among parameters in the SSDM.   
External indicates the statistic was calculated on novel data withheld from model training. Internal indicates 
the statistic was made on data used to train the model. Both panels include taxa whose final model was the 
null. 

3.3.4 SSDM stressor sensitivity 

Absolute sensitivity of taxa to certain stressors was often quite large, reaching >0.5 change in PO 

across stressor domains for some taxa (Figure 3-3). For many taxa the change in PO was nearly 100% 

relative to their maximum PO (i.e., relative sensitivity). Such large changes in PO could be sufficient 

to cause extirpation of those taxa at some point along each stressor (note – we test this assumption 

in Section 4).  
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The direction of taxon stressor responses was also broadly consistent with expectations. Taxa 

characteristic of high nutrient and/or sediment pollution typically increased in PO over stressor 

domains (e.g., Physa, Ostracoda, Oligochaeta, Chironomidae, Platyhelminthes), while other taxa 

decreased in PO (Appendix E). The form of these relationships was also consistent with expectations, 

being mostly simple non-linear increases or decreases, with occasional quadratic (i.e., hump-shaped) 

forms typical of nutrient enrichment (e.g., Costachorema response to DIN). 

 

Figure 3-3: Absolute (red) and relative (orange) sensitivity of taxa to each stressor.   Absolute sensitivity 
was defined as the range in predicted PO of a taxon across the domain of a stressor. Relative sensitivity was 
defined as absolute sensitivity divided by the maximum PO for that taxon. Taxa are ordered left to right by the 
mean rank of relative sensitivity among all three stressors. Only the 40 most sensitive taxa among all three 
stressors are shown (see Table D-1 for sensitivity of all taxa modelled).  

3.4 Conclusions 

▪ The SSDM was well-fitted and showed minimal signs of bias for most taxa. 
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▪ Predictive accuracy of models of individual taxa in the SSDM was generally low. This 

means there was a large amount of uncertainty associated with predicting taxon PO 

based solely on the effects of DIN, DRP and VC. 

▪ Sensitivity of individual taxa in the SSDM to each stressor was often very high, and likely 

sufficient to extirpate some taxa as stressors worsened.  

▪ The direction and form of taxon responses to stressors predicted by the SSDM were 

biologically sensible and consistent with expectations. 
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4 Predicting macroinvertebrate community stressor responses 
from the SSDM 

4.1 Summary 

The objectives of this section were to develop and evaluate an approach to predict community stressor 

responses using the SSDM. Our approach was based on Biological Extirpation Analysis (BEA) designed to 

simulate macroinvertebrate community extirpation in response to stressors. We integrated the SSDM into 

the BEA to: 

▪ Assess the sensitivity of community extirpation to each stressor. 

▪ Assess the sensitivity of community extirpation to different multi-stressor scenarios. 

▪ Provide lookup tables that specify thresholds of DIN, DRP and VC required to minimise extirpation 

to certain levels (e.g., of ≤1%, 2.5%, 5% and 10% extirpation of  taxa in a macroinvertebrate 

community) under different multi-stressor scenarios. 

The simulations showed that: 

▪ Individual stressors had significant and strong effects on community extirpation. Depending on 

the stressor, between 20-30% of the modelled community was extirpated as stressors worsened. 

▪ Relative to the effects of DRP and VC, DIN had the strongest detrimental effects on community 

extirpation. 

▪ Extirpation was strongly influenced by multi-stressor effects. The community extirpated by each 

single stressor increased approximately 10-fold when additional multi-stressor effects were taken 

into account. 

Implications and outcomes: 

▪ In order to achieve a specific invertebrate community extirpation state, thresholds placed on one 

water quality stressor may have to be much more stringent when/where the values of other 

water quality stressors are high.  

▪ Regional plans aiming to reduce and/or control multiple stressors in concert will likely result in 

better environmental outcomes than plans focused on reduction of single stressors in isolation. 

4.2 Methods 

4.2.1 Biological extirpation analysis algorithm 

We used the SSDM presented in Section 3 to estimate the proportion of macroinvertebrate taxa that 

may be locally extirpated as each stressor state worsened. With respect to DIN and DRP, states are 

assumed to worsen as their values increase. In contrast, VC state worsens as its value decreases. Our 

approach was based on biological extirpation analysis (BEA), developed for the USEPA by Cormier 

and Suter (2013), and now commonly used internationally (Zhao et al. 2016, Griffith et al. 2018, 

Shackleton et al. 2019).  

Broadly, the analysis involved two key steps. First, for each stressor, we identify the taxon tolerance 

limit to that stressor likely to extirpate that taxon. This value is defined here as TTcrit (i.e., TT = taxon 
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tolerance). TTcrit is the value of the stressor (in units of the stressor) above which the taxon is 

considered extirpated. This step is completed for all taxa (n=104) in the SSDM (subsequent sections 

will detail TTcrit estimation).  

Second, for each stressor, the TTcrit values of taxa are ranked from the lowest (least tolerant) to 

highest (most tolerant) and transformed to yield a community tolerance distribution (CTD) for the 

stressor. The CTD is a cumulative probability distribution describing the proportion of taxa extirpated 

as a function of stressor state. The CTD is used to estimate CTX,crit, the critical value of the stressor, at 

which some target proportion, X, of the macroinvertebrate community, C, cannot tolerate the 

stressor and are likely to become extirpated (i.e., CT = community tolerance). We estimated CTX,crit for 

X=1%, 2.5%, 5% and 10% community extirpation.  

BEA assumptions 

The assumptions of BEA as applied in this report are as for the SSDM (Section 3.2.5). A key additional 

assumption made by BEA is that taxa have an upper stressor tolerance threshold (i.e., TTcrit), but not 

a lower threshold5. It is therefore assumed that taxa can tolerate any value of the stressor below 

TTcrit. This assumption could be broken if a taxon’s PO shows an increasing or hump-shaped stressor 

response. While hump-shaped responses were rare among taxa modelled here, increasing responses 

were common among pollution tolerant taxa. Such taxa may in fact be extirpated as stressors 

improve; however, taxa were always assumed to increase in abundance as the state of the stressor 

improved (lower nutrients/higher clarity).  

Given the purpose of BEA, and national policy (NPSFM 2020), is to manage for excessive stressor 

effects, this assumption is arguably reasonable. However, application of the BEA should be carefully 

considered in light of this assumption to both management and regulatory decision-making.  

Monte-Carlo simulation of CTDs, TTcrit and CTx,crit from the SSDM 

The original BEA developed by Cormier and Suter (2013) used a weighted cumulative frequency 

distribution of taxon presences to estimate TTcrit. However, this does not account for a) sample non-

independence, b) confounding processes (Roark et al. 2013, Franklin et al. 2019), and c) the 

interactive effects multiple stressors which could additively or synergistically alter community 

sensitivity to a stressor. We resolved these problems using Monte-Carlo simulations of the SSDM to 

estimate CTDs, TTcrit and CTX,crit as follows: 

1. The final model of each taxon was used to simulate 1000 realisations of the change in PO of 

each taxon over the domain of a ‘target stressor’ (either DIN, DRP or VC). 

a. The domain of the target stressor was limited to between the 2.5-97.5% quantiles of 

the stressor observations to avoid making PO predictions in stressor space with 

limited observations. 

b. For each Monte Carlo realisation the predicted PO values were random draws from a 

normal distribution whose mean and standard error were, respectively, the fitted 

value, and standard error about the fitted value, of each taxon’s best model.  

c. When simulating PO for the target stressor, the values for the ‘other stressors’ in the 

multi-stressor model were fixed at values deemed most relevant to management 

 
5 Reminder: By ‘upper limit’ we mean tolerance of high levels of stress. This does not mean that the stressor value is high in numerical 
value. For example, high levels of stress may be imposed by low visual clarity, but high levels of nutrients. 
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and regulation. We first ran the Monte-Carlo simulation while fixing the other two 

stressors at specific values shown in Table 4-1. This was done to analyse the 

sensitivity of CTDs to different environmental conditions likely encountered by 

managers and sense-check the algorithm. However, final CTDs and stressor 

thresholds were quantified while allowing the other two stressors to vary about the 

observed multi-stressor domain as described in Section 4.2.2. 

2. The direction of change in PO (increasing or decreasing) with respect to the target stressor 

was classified for each realisation.  

▪ The direction of change was estimated from the sign of the median slope resulting from 

a Sen slope analysis on PO as a function of the target stressor (Sen, 1968). Clarity was 

inverse-transformed at this step such that all three stressors worsen as their numerical 

values increase; this simplified the encoding of the algorithm. 

3. For each Monte Carlo realisation all estimates of PO along the target stressor gradient were 

converted into binary presences/absences.  

▪ Following Liu et al. (2005), we used the mean PO fitted to the training data as the 

threshold to determine presence/absence for a given taxon.  

4. Compute TTcrit for each realisation as the maximum value of the target stressor associated 

with a predicted presence. 

▪ TTcrit is the value of the stressor (in units of the stressor) above which the taxon is 

considered extirpated, which according to step 3, occurs when the predicted PO for the 

taxon falls below its mean PO6.  

▪ If, for a specific realisation, no presences were predicted throughout the domain of the 

target stressor, TTcrit was assigned -Inf. This result occurred when the effects of the 

entire domain of the target stressor (e.g. VC) were being simulated within particularly 

stressful regions of the domains of the other stressors (e.g. high values of DIN and/or 

DRP) with which the target stressor is interacting. In such a case, the high values of the 

other stressors may extirpate the taxon, irrespective of the value of the target stressor. 

Assignment of a value of -Inf to TTcrit is logical in a case like this, as it explicates that no 

reduction in the value of the target stressor can be sufficient to reverse extirpation, 

given the high values of the other stressors.  

▪ The final model of some taxon was NULL or did not include the target stressor. Some 

taxa were classified as increasers with respect to the target stressor (step 2). For all 

such cases we assumed the taxa concerned were either insensitive to the target 

stressor or found such environmental conditions favourable. To these taxa we assigned 

an TTcrit value of +Inf (i.e., undefined given the data and model set, following Cormier 

and Suter 2013).  

5. Compute CTX,crit for each Monte Carlo realisation as follows: 

 
6 Using the mean species’ PO as a threshold to infer species presence/absence and therefore extirpation, ensures that extirpation is not 
biased towards very rare or very common species (Liu et al. 2005). 
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a. Rank taxa by ascending TTcrit, such that taxa with the lowest TTcrit are ranked 1 (i.e., 

most sensitive to the stressor). Taxa tied for the same rank were assigned the 

maximum cumulative rank. 

b. Calculate the CTD from the ranks of TTcrit. The CTD is a cumulative probability 

distribution whose y-values give the proportion of taxa locally extirpated as the 

stressor increases. 

c. Calculate CTX,crit via linear interpolation of the CTD axes. The CTX,crit is the value of the 

stressor leading to extirpation of X% of the community. We calculated CTX,crit for 

X=1%, 2.5%, 5% and 10%. 

Table 4-1: Fixed values of stressors used to sense-check the multi-stressor Monte-Carlo simulations.   The 
fixed values of DRP, VC and DIN were chosen to span the relevant NPSFM attribute bands (i.e., those of VC, 
DRP, nitrate and ammonia), while remaining within the 95 percentile range of the observed data. Monte-Carlo 
simulations for any target stressor involved fixing the other two stressors at all possible pairings, yielding 4 x 4 = 
16 multi-stressor scenarios for each target stressor.  

Stressor Fixed values for multi-stressor scenarios 

DRP (mg/L) 0.006 0.010 0.018 0.054 

DIN (mg/L) 0.03 0.24 1.3 2.2 

VC (m) 3 2.2 1.4 0.6 

4.2.2 Optimistic-pessimistic multi-stressor extirpation scenarios 

Our objective was to provide final stressor CTDs, TTcrit and CTX,crit estimates that characterised both 

the uncertainty in the model, as well as the range of multi-stressor conditions that were most likely 

given the data. To achieve this, we re-ran the Monte-Carlo simulation for each stressor, while 

allowing values of the other two stressors to vary randomly within multi-stressor domain of the 

observed data.  

Algorithmically, this involved two steps conducted at Step 1 on each realisation of the of the 

simulation. First, the stressor of interest was binned into 50 equally sized bins spanning its domain. 

Second, for each stressor bin, we sampled (with replacement) one random row from the observed 

data containing observations of the stressor lying within the range of the bin. For each realisation, 

this resulted in 50 observations of the focal stressor, spaced equally across its domain, with the 

observations of the other two stressors sampled from the same rows in the observed data.  

This approach resulted in 1000 simulated CTDs for each stressor, the variation of which characterised 

the range of multi-stressor conditions observed in the data. We then summarised this variation into 

three CTDs for each stressor. The upper 97.5 %, median, and lower 2.5 % quantile of the CTDs were 

defined as the optimistic, typical, and pessimistic CTD, respectively, for a given stressor. The 

optimistic CTD characterised the community extirpated by the stressor while other stressors varied 

about their least stressful state. The typical and pessimistic CTD characterised the community 

extirpated by the stressor while other stressors varied about their median or most stressful states 

respectively.  
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4.3 Results 

4.3.1 Sensitivity of extirpation to multiple stressors 

Differences in CTDs among multi-stressor conditions were consistent with our ecological 

understanding. The percent of the community extirpated increased as DIN (Figure 4-1a), DRP (Figure 

4-1b) and VC (Figure 4-1c) conditions worsened (i.e., DIN/DRP increased, VC decreased) up to a 

maximum of approximately 30% of the modelled community. The level of extirpation for any value of 

the target stressor was generally higher when the other stressors were fixed at more stressful values.  

 

Figure 4-1: Community tolerance distributions (CTDs) for a) DIN, b) DRP and c) VC, under different multi-
stressor scenarios.   Each panel shows the CTD for a stressor on the x-axis, as other stressors (denoted by 
colour or panel headings) are fixed at different combinations of values. The y-axis indicates the % of taxa 
extirpated among those modelled in the SSDM, including those whose best models were the NULL (i.e., n=104 
taxa). Because, TTcrit values for NULL taxa were assumed to be beyond the domain of the observed stressor 
data (i.e., Inf on the x-axis), the CTDs terminate on the y-axis at values <100%. Note that the x-axes, and fixed 
stressor levels (colour/panels), remain within the 2.5-97.5% quantiles of the stressor observations to avoid 
interpolating in poorly sampled stressor space. 

Multi-stressor effects were strong. Consider the CTDs for DIN (Figure 4-1a). When DIN reached 0.24 

mg/L, extirpation may vary between 0% and 10%, depending on levels of other stressors (0% 

extirpation under 0.006 mg/L DRP and 3m VC; 10% extirpation under 0.054 mg/L DRP and 0.6m VC; 
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Figure 4-1a). In this example, approximately 10 additional taxa were extirpated as a result of multi-

stressor effects.  

Stressor thresholds required to achieve different macroinvertebrate extirpation targets (CTX,crit) are 

provided for each set of multi-stressor conditions tested in Appendix F. 

4.3.2 Optimistic-pessimistic multi-stressor extirpation scenarios 

Throughout our multi-stressor domain community extirpation ranges from 0% to 30% (Figure 4-2). 

Extirpation under the pessimistic scenario was approximately 10% (i.e., 10 taxa) higher than that 

observed under the optimistic scenario (Figure 4-2). 

The differences between CTX,crit thresholds resulting from the optimistic and pessimistic CTDs were 

substantial. As an example, limiting DIN to <0.5 mg/L according to the optimistic scenario would 

minimise extirpation to <1% (Figure 4-3a). However, this same DIN concentration would lead to >5% 

extirpation under the pessimistic scenario (Figure 4-3a). It follows that to achieve a specific 

invertebrate community target, thresholds placed on one water quality stressor may have to be 

much more stringent when/where the values of other water quality stressors are high. Regional 

plans that aim to reduce and/or limit multiple stressors in concert will likely result in better 

environmental outcomes than plans focused on reduction of single stressors in isolation.  

 

Figure 4-2: Community tolerance distributions (CTDs) for a) DIN, b) DRP and c) VC, for different multi-
stressor scenarios (colour).   The typical (orange), pessimistic (red) and optimistic (blue) multi-stressor 
scenarios show CTDs for each stressor while remaining stressors vary about their median, most or least 
stressful conditions, respectively, according to the observed data. Note that the y-axis pertains to the full set of 
taxa modelled in the SSDM (n=104). 

The median taxon tolerance values (TTcrit) for the least tolerant taxa are shown in Figure 4-4. The five 

least tolerant taxa for each stressor predominantly belonged to EPT orders. However, many non-EPT 

groups were also well represented among the least tolerant. Moreover, there was substantial 

uncertainty in TTcrit for each taxon, with upper and lower confidence intervals often spanning the 

entire stressor domain7 (Appendix H).  

 
7 Note that the width of STcrit confidence intervals in Figure 4-4 include uncertainty caused by the different multi-stressor scenarios (the 
difference between optimistic-pessimistic lines in Figure 4-2). This uncertainty is uncertainty about the state of other stressors in the 
environment and is fully factored into the estimates of CTcrit in Figure 4-3 and should not, therefore, diminish confidence in those 
estimates. In practical terms, this means uncertainty in the state of multiple stressors makes the precise order or species extirpation 
resulting from any single stressor highly uncertain. 
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Figure 4-3: Thresholds for a) DIN, b) DRP and c) VC required to limit community extirpation to 1%, 2.5%, 
5%, or 10% (CTX,crit), for optimistic (blue), pessimistic (red) and typical (orange) thresholds.   The typical, 
pessimistic, and optimistic multi-stressor scenarios show thresholds for each stressor while remaining stressors 
vary about their median, worst or least stressful conditions, respectively. Thresholds are repeated in table form 
in Appendix G. 

 

Figure 4-4: Median taxon tolerance values (TTcrit) for a) DIN, b) DRP, and c) VC resulting from the 
optimistic-pessimistic BEA Monte-Carlo simulation.   TTcrit indicates the value of each stressor above which the 
taxon is likely extirpated. Taxa whose median TTcrit values were beyond the domain of the data (i.e., +Inf for 
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DIN and DRP or -Inf for VC) are not shown. Median and confidence intervals for TTcrit values for all taxa and 
stressors are shown as points and error bars and are available in Table H-1. 

4.4 Conclusions 

Taxon stressor sensitivity modelled by the SSDM was ecologically important: 

▪ Individual stressors had significant and strong effects on community extirpation. Depending 

on the stressor, between 20-30% of the modelled community was extirpated as stressors 

worsened. 

▪ Relative to the effects of DRP and VC, DIN had the strongest detrimental effects on 

community extirpation. 

▪ Extirpation was strongly influenced by multi-stressor effects. The community extirpated by 

each single stressor increased approximately 10-fold when additional multi-stressor effects 

were taken into account. 

Implications and outcomes: 

▪ In order to achieve a specific invertebrate community target, thresholds placed on one 

water quality stressor may have to be much more stringent when/where the values of 

other water quality stressors are high.  

▪ Regional plans that aim to reduce and/or limit multiple stressors in concert will likely result 

in better environmental outcomes than plans focused on reduction of single stressors in 

isolation. 
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5 Macroinvertebrate index model fitting and evaluation 

5.1 Summary 

The objective of this section was to fit and evaluate the predictive accuracy, sensitivity, and assumptions of 

macroinvertebrate index models (MIMs).  

Model fitting, accuracy, and sensitivity of MIMs fitted to each index (MCI, QMCI and ASPM) broadly followed 

the same procedures as those of the SSDM (Section 3). We also used the SSDM extirpation simulations 

(Section 4) to evaluate index assumptions regarding taxon stressor tolerance. 

Conclusions from this section were: 

▪ No major violations of statistical assumptions were observed for the ASPM MIM. While slight 

departures from normality were observed at extreme values of MCI and QMCI, the fitted stressor 

effects of the MCI and QMCI MIMs were robust to these.  

▪ Cross-validated predictive accuracy of MIMs was low for all indices.  

▪ Macroinvertebrate indices were insensitive to DIN, DRP and VC. While the MIMs predicted that 

MCI and QMCI would increase if DIN, DRP and VC stressors improved, these increases would be 

insufficient to lift sites beyond their current NPSFM attribute bands.  

▪ Index assumptions regarding taxon stressor tolerance were generally not met. This likely explains 

why indices were insensitive to stressors. 

▪ MCI, QMCI and ASPM were not suitable indicators of DIN, DRP or VC pollution. 

5.2 Methods 

5.2.1 MIM parameterisation, selection and fit 

Macroinvertebrate index models were developed for MCI, QMCI and ASPM. Indices were calculated 

as described in Section 2. The approach used to parameterise and select MIMs was very similar to 

that used for each taxon in the SSDM with some adjustments as follows.  

The gamm4 package (Wood and Scheipl, 2017) was used to fit MCI and QMCI MIMs using a Gaussian 

distribution. The ASPM index, however, is best described as a continuous probability beta 

distribution (i.e., 0<ASPM<1). The gamm4 package does not support this distribution family. We 

therefore used the mgcv package (Wood 2017) to fit ASPM MIMs with a beta distribution. 

All MIM GAMMs were fitted using the same smoother basis dimension parameterisations as used for 

each taxon in the SSDM. However, we did not test the effects of increasing K on model fit for MIMs 

as the effective degrees of freedom of final models was consistently <2. Consequently K = 6 was 

considered adequate to characterise the non-linearity of the MIMs. 

The statistical assumptions of MIMs are broadly the same as those for the SSDM (Sections 3.2.2). The 

evaluation of those assumptions therefore followed similar procedures, but with adjustments to 

accommodate the different distributions of the indices. Specifically, we evaluated the assumption 

that MCI and QMCI were normally distributed using standardised residuals. The assumption that 

ASPM was beta distributed was assessed using quantile residuals following Hartig (2022). 
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5.2.2 MIM predictive accuracy and sensitivity 

We used 10-fold cross-validation to determine predictive accuracy of each MIM. Nash-Sutcliffe 

Efficiency (NSE, Nash and Sutcliffe 1970) was the statistic used to determine predictive accuracy 

during cross-validation. The NSE statistic provides a measure of predictive performance by indicating 

how closely a plot of observed versus predicted values lies to the 1:1 line (i.e., the degree to which 

two sets of values coincide). NSE values range from −∞ to 1. An NSE of 1 corresponds to a perfect 

match between predictions and the observed data, an NSE of 0 indicates that the model predictions 

are as accurate as the mean of the observed data; and an NSE less than 0 indicates that the observed 

mean is a better predictor than the model.  

We also calculated the coefficient of determination (R2) of each final model. The coefficient of 

determination was calculated while iteratively excluding each random effect from model predictions, 

to assess the variance attributed to each effect. 

Sensitivity of each macroinvertebrate index was estimated for each stressor following the same 

procedures as for PO of taxa in the SSDM, but instead using the predicted values of each index.  

5.2.3 Evaluating the taxon-specific stressor tolerance assumptions of macroinvertebrate 
indices 

Values of MCI, QMCI and ASPM are essentially based on weighted summations of taxon tolerance 

scores—the 𝑎𝑖-values of Equations 1 and 2. These tolerance scores are based on expert opinion, and 

are not estimated from data. When these metrics are used as indicators of specific water quality 

stressors the following assumptions are made:  

1. taxon tolerance scores derived from expert opinion positively correlate with data-based 

estimates of taxon-specific tolerances (derived from the BEA, in our case); and 

2. taxon-specific tolerances are correlated across multiple stressors or, put another way, one 

set of taxon-specific tolerances is indicative of tolerances to all stressors we are applying 

the community indices to. 

The first assumption was evaluated by correlating the median taxon tolerance (TTcrit) values 

simulated by the BEA (Table H-1) against the hard-bottom tolerance scores used by each index. 

Assumption 2 was assessed by analysing the co-variance in TTcrit values among stressors.  

5.3 Results 

5.3.1 MIM parameterisation, selection and fit 

The final model for MCI and QMCI MIMs included all three stressors as additive effects but was the 

NULL model for ASPM (Table 5-1). Consequently, there was support for stressor effects on MCI and 

QMCI but not ASPM. 

Residual QQ plots for both the MCI (Figure I-1) and QMCI (Figure I-2) MIM showed departures from 

normality at the tails of the residual distribution. This was probably caused by the fact that both 

indices have upper and lower bounds. That is, MCI and QMCI are bounded between 0-200 and 0-10, 

respectively, and therefore they do not follow a normal distribution at extreme ends of their 

distributions. However, the residuals were homogeneous with respect to each stressor (residuals 

versus stressor plots in Figure I-1–Figure I-2), suggesting the stressor effects were unbiased and 

robust to this departure from normality. The QQ plot for ASPM was approximately linear and 
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residuals were homogeneous with respect to each stressor suggesting the assumption that ASPM 

was beta distributed was correct (Figure I-3). 

Table 5-1: Model selection and performance results for the MIMs.   The final model is that which 
minimised AIC among candidate models for each index. Model Akaike weight (AICw), total effective degrees of 
freedom (EDF), cross-validated Nash-Sutcliffe's Efficiency (CV NSE) and parameter-specific coefficient of 
determination (R2) are shown. 

Metric Final model AIC AICw Total EDF CV NSE R2 stressors R2 Site R2 CZ/Year R2 CZ 

MCI DIN+DRP+VC 21763.76 0.53 4 0.04 0.12 0.65 0.03 0.04 

QMCI DIN+DRP+VC 8852.3 0.56 3.5 0.02 0.07 0.55 0.05 0.04 

ASPM NULL -5664.67 0.48 0 -0.1 - - - - 

 

5.3.2 MIM predictive accuracy 

Model predictive performance for all MIMs was very low, with NSE reaching only as high as 0.04 

(Table 5-1). The R2 of the fixed effects of the final model was also very low, with a substantially larger 

amount of variation attributed to the random effects, particularly site (Table 5-1). 

5.3.3 MIM stressor sensitivity 

 

Figure 5-1: Partial plots of MCI (top row), QMCI (bottom row) MIM predictions to each stressor relative to 
NPSFM state bands (colour).  

Unlike the SSDM, the sensitivity of macroinvertebrate indices to stressors was very low. In absolute 

units, the sensitivity of MCI and QMCI to each stressor was insufficient to shift macroinvertebrate 
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attribute states beyond a single NPSFM band (Figure 5-1). Given the data and our modelling 

approach, the NPSFM macroinvertebrate attributes appear to be very poor indicators of DIN, DRP 

and VC impacts. 

5.3.4 Evaluating macroinvertebrate index taxon tolerance assumptions 

Support for the first assumption—that index tolerance scores positively correlate with data-based 

stressor tolerance—was very weak (Figure 5-2). The correlations between MCI tolerance and stressor 

tolerance modelled by the SSDM were weak for all three stressors (Spearman’s Rho coefficient = 

0.36, 0.40 and 0.16 for DIN, DRP and VC tolerance, respectively). 

 

Figure 5-2: Covariance between MCI hard-bottom (HB) tolerance scores (y-axis) and modelled a) DIN, b) 
DRP, and c) VC, tolerance.   Modelled stressor tolerances are median TTcrit values as modelled by the SSDM 
from Table H-1, excluding any taxa whose tolerances were beyond the stressor domains (i.e., Inf/-Inf). Some 
axes were inversed to ensure the least tolerant taxa were on the bottom left of each panel. 

Support for the second assumption—that taxon tolerances are the same for all stressors—was also 

very weak (Figure 5-3). While simulated DIN and DRP tolerance was weakly positively correlated 

(Spearman’s Rho = 0.67) (Figure 5-3a), there were no correlations between either nutrient stressor 

and VC (DIN – VC Rho = 0.30, DRP – VC Rho = 0.32) (Figure 5-3ab). Thus, taxon tolerance was typically 

different for each stressor. 

 

Figure 5-3: Covariance between modelled tolerance of a) DIN and DRP, b) DRP and VC, and c) DIN and VC.   
Modelled stressor tolerances are median TTcrit values as modelled by the SSDM from Table H-1, excluding any 
taxa whose tolerances were beyond the stressor domains (i.e., Inf/-Inf). 
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5.4 Conclusions 

▪ No major violations of statistical assumptions were observed for the ASPM MIM. While 

slight departures from normality were observed at extreme values of MCI and QMCI, the 

fitted stressor effects of the MCI and QMCI MIMs were robust to these.  

▪ Cross-validated predictive accuracy of MIMs was low for all indices.  

▪ Macroinvertebrate indices were insensitive to DIN, DRP and VC. This means it would not be 

possible to achieve NPSFM macroinvertebrate target states by reducing DIN, DRP or VC as 

specified by national policy. 

▪ Index assumptions regarding taxon stressor tolerance were generally not met. This likely 

explains why indices were insensitive to stressors. 

▪ MCI, QMCI and ASPM were not suitable indicators of DIN, DRP or VC pollution. 
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6 Discussion 

6.1 Summary 

This report is the second in a series specifically framed around offering information on ecological 

changes anticipated from alternative pollutant regimes modelled by the FWMT (Healthy Waters, 

Auckland Council). The earlier NIWA-FWMT report had prioritised the development of 

macroinvertebrate response models as the most suitable means of conveying broader ecosystem 

health information from changes in contaminant regime, including the exploration of index-based 

models (MIMs) and development of taxon-specific models (SSDM) prior to development of 

community extirpation models (BEA). 

The objectives of this report were to 1) evaluate MIMs and SSDMs as approaches to model 

macroinvertebrate responses to DIN, DRP and VC, and 2) develop lookup tables quantifying those 

responses that can be used with FWMT output.  

The models were evaluated using multiple criteria: 

▪ Model fit – did the models meet the statistical assumptions underlying them? Was there 

any bias in estimated stressor effects? 

▪ Uncertainty – how uncertain were model predictions? 

▪ Sensitivity – how sensitive are model responses to each stressor? 

▪ Ecological plausibility – how well do models align with our ecological understanding? 

Both MIMs and the SSDM were difficult to distinguish based on Criterion 1. Residual diagnostics of 

both model approaches indicated they were generally well-fitted, and there was little bias in their 

predicted stressor effects (see Section 3.2.2 for the SSDM and Section 5.2.1 for MIMs).  

The two approaches were also difficult to distinguish based on Criterion 2. The accuracy of model 

predictions made on novel data was low for both the SSDM (Figure 3-2a) and the MIMs (Table 5-1). 

Irrespective of the response variable, the variance explained by stressor terms of best models was 

low (<10%). The low amount of variance explained by the stressors is consistent with previous efforts 

to model responses of New Zealand macroinvertebrate to nutrients and suspended sediment 

(Clapcott and Goodwin 2014, Wagenhoff et al. 2017). There is clearly a very high degree of 

uncertainty associated with predicting macroinvertebrate communities as a function of nutrients and 

suspended sediment. 

There were clear differences between approaches with respect to the sensitivity of models to 

stressors and the ecological plausibility of model fits (Criteria 3-4). The sensitivity of PO of taxa to 

each stressor predicted by the SSDM was often very high (Figure 3-3). The BEA—which has as its 

foundation the SSDM—indicated this sensitivity was high and could lead to 20-30% of the 

macroinvertebrate community being extirpated by each stressor (Figure 4-2). The SSDM and BEA 

predicted responses to stressors that were biologically plausible, and generally consistent with 

contemporary models (Clapcott et al. 2017, Wagenhoff et al. 2017). Consequently, nutrient and VC 

criteria to meet various macroinvertebrate community targets were estimated and presented in 

Section 4.3 using the BEA derived from the SSDM. 
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In contrast, the MIMs were insensitive to stressors and ecologically implausible – that is the 

assumptions they made regarding taxon tolerances to multiple stressors were not supported. Given 

the data and modelling approach, MCI and QMCI changed very little as a function of variation in DIN, 

DRP and VC (Figure 5-1). ASPM was completely insensitive to each stressor. The insensitivity of 

macroinvertebrate attributes was likely a result of the taxon-specific tolerance scores derived from 

expert opinion being poorly related to observed taxon-specific tolerances derived from data (our 

SSDM; Figure 5-2 - Figure 5-3).  

Models that directly related NPSFM attributes to water quality stressors (our MIMs) clearly have high 

relevance to the NPSFM. However, despite this relevance, we found no evidence that they are 

effective for understanding or managing the effects of nutrients or visual clarity stressors on 

instream values (macroinvertebrates in our case). By contrast, we presented approaches based on an 

SSDM that, while arguably being less directly relevant to central policy, should be more effective for 

managing multiple water quality stressors to meet macroinvertebrate ecological objectives.  

6.2 Limitations, assumptions, and application of the SSDM 

Our multilevel modelling framework allows us to partition spatial and temporal variance in 

macroinvertebrate occurrence into two broad classes of effects: the ‘fixed’ effects of the stressors of 

interest, and the ‘random’ effects of other sources of spatial and temporal variation that are not the 

focus of our investigation. Our fixed-effect terms were parameterised to capture the effects of 

stressors whose dynamics are outputs of Auckland Council’s FWMT.  

Our models were relatively simple, focusing on the effects of DIN, DRP and VC fixed effects. Variance 

attributed to processes varying among sites (e.g., habitat, elevation) and climate were partitioned 

into random effects. The SSDM therefore assumed that stressor effects were independent of those 

processes and do not vary simply due to changes in spatial location or time. 

A consequence of this assumption is that SSDM predictions to any site were highly uncertain. The 

stressor fixed effects explained only a small amount of variance relative to the random effects, 

particularly site, which cannot be used for inference. 

Whether such uncertainty is acceptable for decision making depends on the intended application of 

the model (MacNally et al. 2017, White et al. 2023). Additional parameters could be included in the 

SSDM to help reduce this uncertainty. However, many of the processes associated with the random 

effects are likely not simulated by the FWMT (e.g., source-sink dynamics, proximity to colonists), or 

are static (e.g., elevation). The value of adding these variables as fixed effects is therefore 

questionable, given our objectives.  

Ultimately, it is most important that we are confident about the effects we can simulate with the 

FWMT. By keeping models simple, we ensured that: 

▪ The risk of confounding stressor effects with other covarying processes was minimised 

(Dormann et al. 2013). 

▪ The SSDM was not over- or under-fitted, thereby making the stressor effects more 

generally applicable (Merow et al. 2014).  

The resulting stressor effects estimated by the SSDM were statistically robust, biologically consistent, 

and ecologically important. The model was not accurate at predicting exactly which taxa will be 

present at a given site, given all processes operating at that site. It is unrealistic to expect this from 
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correlative statistical models. However, the model should be robust for evaluating the behaviour of 

macroinvertebrate community dynamics to nutrient and sediment scenarios, assuming other drivers 

are constant.  

The BEA presented in Section 5 is one such application. The analysis specifies stressor thresholds 

required to achieve macroinvertebrate extirpation targets under different multi-stressor scenarios. 

These thresholds can be compared to nutrient and sediment forecasts made by the FWMT to assess 

how each stressor may be limiting taxon presence. The thresholds do not imply that the taxa 

predicted to be present will be truly observed at any given site. Other unmodelled processes are 

likely to additionally limit which taxa will be present at a site. However, the analysis provides a tool 

for managers to diagnose how nutrients and sediment may be limiting macroinvertebrate 

community composition independently of other factors.  

6.3 Next steps 

This study showed that the SSDM was a good foundation for modelling the response of 

macroinvertebrate composition to nutrient and sediment scenarios. The next steps should continue 

to develop application of the SSDM to Auckland Council’s specific requirements, particularly 

simulation of continuous community responses to FWMT outputs. To do so there are several factors 

that need to be considered: 

1. Should SSDM forecasts consider only a subset of taxa important to the Auckland region?  

2. What alternative approaches are suitable to aggregate responses of individual taxa from 

the SSDM into community responses? 

3. How should we calibrate FWMT TSS forecasts into VC for input into the SSDM? 

4. Should additional FWMT parameters should be added to the SSDM as fixed effects? 

These points are expanded below. 

1. All modelling activities in this report were based on national macroinvertebrate datasets. 

However, less than 70% of those taxa were sensitive to the stressors. Because some taxa 

may be restricted to certain regions, not all these taxa are necessarily relevant to the 

Auckland region. We therefore recommend a workshop with macroinvertebrate experts to 

determine if models should only consider certain taxa, and which ones are important. This 

workshop might also identify key taxa, that are indicators of biological, functional, or 

cultural significance in Auckland for forecasting. Sub-setting to such taxa may make SSDM 

forecasts more regionally relevant. This wouldn’t require model refits, but rather selection 

of taxa from the existing SSDM from which to draw inferences. 

2. In this report, the SSDM was used via BEA to quantify water quality thresholds that can be 

used to evaluate FWMT output. Alternative algorithms could be applied to the existing 

SSDMs to model different aspects of the macroinvertebrate community, such as taxon 

turnover (Ellis et al. 2012), or richness (Schipper et al. 2014). These approaches are better 

suited to capture community responses to continuous observations of nutrients and 

sediment.  

3. The FWMT outputs total suspended solids (TSS), not VC. To forecast the effects of TSS using 

the SSDM, we need to develop functions that convert TSS to VC. Recent modelling work 
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recommended against this due to what they called “high” residual error in VC-TSS linear 

regressions (RMSE: 22-32 cm) (Montgomery et al. 2022). However, the magnitude of 

statistical uncertainty that may be deemed tractable (or problematic) very much depends 

on how model outputs are to be used (MacNally et al. 2017, White et al. 2023). The 

uncertainty in VC-TSS calibrations, while not acceptable for the objectives considered by 

Montgomery et al. (2022), may be acceptable for macroinvertebrate modelling, where: 

▪ We require relationships between annual medians (not the daily observations used by 

Montgomery et al. 2022, which tend to inflate RMSE relative to relationships at coarser 

resolutions); and 

▪ Where the statistical uncertainty in the relationship between TSS and VC is actually small, 

relative to the statistical uncertainty about the relationships between stressors and taxon 

responses in the SSDM. 

Further, one could suggest that uncertainty about the relationship between TSS and VC 

could be further reduced through more advanced partitioning of error sources using 

multilevel modelling—like the models used here as inputs to the SSDM. An analysis using 

multilevel models may help us to better reduce uncertainty concerning the relationship 

between VC and TSS, as we could (a) account for error induced by temporal 

autocorrelation, and (b) borrow strength across sampling units in space and time to better 

isolate the ‘fixed-effects’ between VC and TSS. Simulations could also be used to assess the 

significance of it to macroinvertebrate forecasts with the SSDM. 

4. The SSDM considered only nutrients and sediment as fixed effects that could be simulated 

by the FWMT. The FWMT also simulates river flow. Inclusion of flow as a fixed effect in the 

SSDM would be possible via forecasts produced by NIWAs national flow models (TopNet). 

However, this would require investment in gathering/tidying hindcasted hydrology 

timeseries for the national dataset and SSDM refit/re-evaluation.  

There is also a risk that the indirect and direct effects of flow, sediment and nutrients 

become confounded in the translation of FWMT output to the SSDM. Flow likely has direct 

effects on macroinvertebrate presence, but also indirect effects via its influence on 

nutrients and sediment dynamics. While it may be possible to partition the indirect and 

direct pathways of flow, nutrients, and sediment in the FWMT, our ability to do so with the 

SSDM is more limited, owing to the correlational nature of the data. Failure to properly 

translate the indirect and direct pathways of flow between the FWMT and the SSDM may 

bias the influence of each process in simulations of the SSDM using FWMT output.  

This risk needs to be considered given the relative importance of flow and stressor 

management in the Auckland region. If stressor management is a more pressing 

management concern than flow, our approach of partitioning flow into random effects via 

climate zones, may be more robust than attempting to model flow as a fixed effect.  
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Appendix A Spatial and temporal distribution of sites 

f  

Figure A-1: Distribution of sites among regions, years and sources.  

 

Figure A-2: Distribution of sites among climate zones, years, and sources.  
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Appendix B Collinearity among stressor variables 

 

Figure B-1: Collinearity among stressor variables.   Spearman correlation coefficients are shown on the 
upper panels. Relationships between stressors are shown on the lower panels. Frequency histograms of each 
stressor are shown on the diagonal panels. 
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Appendix C Effects of increasing the basis dimension of GAMM 

smoothers on model selection for the SSDM. 
We assessed the effects of increasing the basis dimension on GAMM smoothers on model selection 
for five macroinvertebrate species representing a range of rarity, life-histories and feeding strategies. 
We applied the same model selection procedure to these taxa, described in Section 3.2.1, after 
incrementally setting K at 6, 12 and 24. For each setting of K, the basis dimension for univariate 
smoothers was set to 1K, while it was set to 2K and 4K for bivariate and multivariate smoothers, 
respectively. The table below shows that increasing K had no effect on the final model selected for 
each taxon. There were no consistent changes in AIC (ΔAIC) with increasing the smoother basis 
dimension, with both increases in decreases in AIC observed as K increased, among taxa. There was 
also no overwhelming support for any particular basis dimension setting as indicated by Akaike 
Weights (wAIC) being approximately equal across K settings within each taxon. This implied that K = 6 
was sufficient to capture the complexity of non-linearity and parameterisation of stressor effects on 
taxon PO. 

Taxon AIC Final model K ΔAIC wAIC 

Austrosimulium 3369.56 DRP 6 0 0.33 

 3369.56 DRP 12 0 0.33 

 3369.56 DRP 24 0 0.33 

Deleatidium 1431.31 DIN:DRP 6 2.78 0.12 

 1428.93 DIN:DRP 12 0.39 0.4 

 1428.53 DIN:DRP 24 0 0.48 

Hydrobiosis 2233.68 DIN:DRP:VC 6 0 0.33 

 2233.68 DIN:DRP:VC 12 0 0.33 

 2233.68 DIN:DRP:VC 24 0.01 0.33 

Pycnocentria 3139.47 DIN+DRP 6 0.01 0.34 

 3139.46 DIN+DRP 12 0 0.35 

 3139.69 DIN+DRP 24 0.23 0.31 

Zelandoperla 2007.43 DIN:DRP 6 0.02 0.33 

 2007.41 DIN:DRP 12 0 0.34 

 2007.42 DIN:DRP 24 0.01 0.33 
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Appendix D SSDM Model selection results  

Table D-1: Model selection, predictive accuracy and sensitivity results for models of individual taxa of the 
SSDM.   The final model is that which minimised AIC among candidate models for each metric. AICw is the 
Akaike weight of the final model, total EDF is the total effective degrees of freedom from all fixed effect 
smoothers in the final model, AUCcv is the mean model AUC from the 10-fold cross-validation procedure. 
Absolute sensitivty (PO range) and relative sensitivity (PO range/maximum PO) from model partial predictions 
across each stressor domain are also shown. 

      DIN Sensitivity DRP Sensitivity VC Sensitivity 

Taxon Final model AIC AICw Total EDF AUCCV Absolute Relative Absolute Relative Absolute Relative 

Acanthophlebia NULL 513 0.52 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Acarina NULL 2645 0.53 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Acroperla NULL 669 0.49 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Ameletopsis DIN 504 0.27 1 0.68 <0.01 0.98 <0.01 0 <0.01 0 

Amphipoda DIN:DRP:VC 1746 0.38 9 0.55 0.01 0.4 0.02 0.56 0.01 0.63 

Aoteapsyche DIN:DRP 1894 0.69 9.11 0.72 0.32 0.34 0.4 0.41 <0.01 0 

Aphrophila DIN:DRP:VC 2780 1 9 0.62 0.5 0.85 0.49 0.76 0.33 0.41 

Archichauliodes DIN:DRP:VC 2784 0.73 9 0.61 0.49 0.8 0.33 0.53 0.29 0.36 

Atalophlebioides DIN:DRP 535 0.26 2 0.66 <0.01 0.78 <0.01 0.8 <0.01 0 

Austroclima DIN:DRP:VC 2980 0.41 9 0.53 0.06 0.28 0.11 0.5 0.15 0.51 

Austroperla DIN:VC 1079 0.46 2.29 0.73 <0.01 1 <0.01 0 <0.01 0.69 

Austrosimulium DRP 3370 0.2 1 0.57 <0.01 0 0.1 0.18 <0.01 0 

Beraeoptera DIN+DRP+VC 1864 0.39 3.15 0.69 0.03 0.9 0.02 0.79 0.06 0.78 

Berosus DIN 901 0.35 1 0.49 <0.01 0.83 <0.01 0 <0.01 0 

Ceratopogonidae NULL 986 0.32 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Chironomidae DIN:DRP:VC 3472 0.4 9 0.54 0.18 0.27 0.01 0.02 0.19 0.31 

Chironomus DRP:VC 644 0.26 2 0.69 <0.01 0 <0.01 0.45 <0.01 0.84 

Cladocera DRP 476 0.47 1.8 0.72 <0.01 0 <0.01 0.97 <0.01 0 

Collembola DRP 556 0.35 1.69 0.68 <0.01 0 <0.01 0.95 <0.01 0 

Coloburiscus DIN:DRP 2617 0.69 2 0.56 0.27 0.8 0.23 0.66 <0.01 0 

Confluens NULL 726 0.34 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Copepoda DIN:DRP 579 0.29 2.51 0.8 <0.01 0.84 <0.01 0.65 <0.01 0 

Costachorema DIN:DRP:VC 2743 1 9 0.58 0.19 0.96 0.18 0.89 0.12 0.46 

Deleatidium DIN:DRP 1431 0.72 7.36 0.73 0.06 0.06 0.12 0.12 <0.01 0 

Dytiscidae NULL 380 0.51 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Elmidae DIN:DRP 1556 0.72 8.2 0.71 0.07 0.07 0.12 0.12 <0.01 0 

Empididae DIN:DRP 2231 0.24 2 0.54 0.03 0.38 0.03 0.37 <0.01 0 

Ephydridae DRP 818 0.53 1.85 0.55 <0.01 0 0.03 0.74 <0.01 0 

Eriopterini DIN:DRP 2618 0.63 2 0.65 0.24 0.93 0.16 0.65 <0.01 0 

Ferrissia NULL 772 0.48 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Gyraulus DRP 990 0.3 1 0.57 <0.01 0 <0.01 0.46 <0.01 0 
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      DIN Sensitivity DRP Sensitivity VC Sensitivity 

Taxon Final model AIC AICw Total EDF AUCCV Absolute Relative Absolute Relative Absolute Relative 

Helicopsyche DRP:VC 1701 0.36 5.05 0.62 <0.01 0 0.01 0.89 0.01 0.62 

Hexatomini NULL 654 0.56 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Hirudinea NULL 925 0.42 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Hudsonema DIN 2349 0.6 3.57 0.6 0.16 0.69 <0.01 0 <0.01 0 

Hydra DIN 438 0.35 1.82 0.73 <0.01 0.99 <0.01 0 <0.01 0 

Hydraenidae DIN:VC 1716 0.33 6.63 0.61 0.04 0.87 <0.01 0 0.06 0.79 

Hydrobiosella NULL 563 0.53 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Hydrobiosis DIN:DRP:VC 2234 0.43 9 0.64 0.08 0.08 0.14 0.16 0.1 0.1 

Hydrochorema NULL 354 0.29 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Hydrophilidae NULL 1163 0.54 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Hygraula NULL 594 0.36 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Ichthybotus NULL 407 0.54 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Isopoda NULL 296 0.56 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Latia DIN:DRP 1260 0.55 2 0.51 <0.01 0.91 <0.01 0.74 <0.01 0 

Lymnaeidae DIN:DRP:VC 594 0.21 9 0.59 <0.01 0.72 <0.01 0.81 <0.01 0.92 

Maoridiamesa DRP 169 0.39 2.15 0.32 <0.01 0 <0.01 0.84 <0.01 0 

Mauiulus NULL 1047 0.47 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Megaleptoperla NULL 1266 0.3 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Microvelia NULL 734 0.24 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Mischoderus DIN 1635 0.35 1 0.51 0.03 0.68 <0.01 0 <0.01 0 

Molophilus DIN:VC 1401 0.29 2 0.65 0.03 0.8 <0.01 0 0.03 0.7 

Muscidae DIN:DRP 2632 0.39 5.52 0.55 0.14 0.54 0.03 0.19 <0.01 0 

Nematoda DIN:DRP 1411 0.42 7.08 0.65 0.05 0.72 0.05 0.73 <0.01 0 

Nematomorpha NULL 449 0.33 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Nemertea DRP:VC 1126 0.29 2 0.58 <0.01 0 <0.01 0.29 0.01 0.81 

Neozephlebia NULL 915 0.55 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Nesameletus DIN:DRP:VC 2241 0.97 9 0.66 0.15 0.98 0.15 0.98 0.25 0.72 

Neurochorema DIN:DRP:VC 2819 0.82 9 0.63 0.14 0.82 0.16 0.85 0.24 0.7 

Nothodixa NULL 154 0.35 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Oecetis NULL 415 0.28 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Oeconesidae NULL 319 0.38 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Oligochaeta DIN:DRP:VC 3307 0.57 9 0.57 0.19 0.22 0.2 0.23 0.12 0.16 

Olinga DIN:DRP:VC 2595 0.32 9 0.68 0.23 0.64 0.19 0.52 0.54 0.75 

Orthocladiinae DRP 1810 0.28 2.72 0.58 <0.01 0 0.06 0.07 <0.01 0 

Orthopsyche NULL 649 0.43 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Ostracoda DIN:DRP 2241 0.7 7.5 0.66 0.37 0.87 0.27 0.84 <0.01 0 

Oxyethira DIN:VC 3547 0.42 2 0.55 0.16 0.27 <0.01 0 0.14 0.3 

Paracalliope DIN+DRP 1283 0.74 5.99 0.79 0.08 0.9 0.05 0.98 <0.01 0 
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      DIN Sensitivity DRP Sensitivity VC Sensitivity 

Taxon Final model AIC AICw Total EDF AUCCV Absolute Relative Absolute Relative Absolute Relative 

Paradixa DIN:VC 357 0.26 2.46 0.8 <0.01 0.93 <0.01 0 <0.01 0.98 

Paraleptamphopus NULL 272 0.41 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Paralimnophila NULL 985 0.25 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Paranephrops NULL 301 0.42 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Paratya NULL 729 0.3 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Paroxyethira DIN:DRP:VC 904 0.63 9 0.7 <0.01 0.3 0.06 0.92 <0.01 0.58 

Philorheithrus NULL 211 0.47 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Physa DIN:DRP 2266 0.46 7.69 0.69 0.37 0.86 0.24 0.82 <0.01 0 

Platyhelminthes DIN:DRP:VC 2537 0.83 9 0.62 0.13 0.59 0.15 0.63 0.03 0.28 

Plectrocnemia VC 550 0.3 1.77 0.72 <0.01 0 <0.01 0 <0.01 0.93 

Polychaeta NULL 252 0.5 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Polyplectropus NULL 668 0.4 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Potamopyrgus DIN:DRP 2305 0.94 7.17 0.69 0.12 0.12 0.1 0.11 <0.01 0 

Psilochorema DIN:DRP:VC 2941 0.54 9 0.66 0.22 0.35 0.32 0.5 0.4 0.47 

Psychodidae DRP 438 0.21 1 0.66 <0.01 0 <0.01 0.52 <0.01 0 

Ptilodactylidae DIN 695 0.25 1 0.61 <0.01 0.97 <0.01 0 <0.01 0 

Pycnocentria DIN+DRP 3139 0.42 3.24 0.57 0.3 0.49 0.18 0.47 <0.01 0 

Pycnocentrodes DIN:DRP:VC 3014 0.97 9 0.6 0.05 0.06 0.37 0.48 0.25 0.28 

Rallidens NULL 514 0.52 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Scirtidae VC 473 0.26 1.31 0.66 <0.01 0 <0.01 0 <0.01 0.87 

Sigara DIN:DRP:VC 1050 0.29 9 0.62 0.01 0.6 0.03 0.84 <0.01 0.48 

Sphaeriidae DIN 1227 0.39 3.21 0.71 0.06 0.95 <0.01 0 <0.01 0 

Staphylinidae NULL 495 0.34 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Stenoperla DIN:VC 1371 0.34 2 0.75 <0.01 0.98 <0.01 0 <0.01 0.7 

Stictocladius NULL 217 0.5 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Stratiomyidae DRP 300 0.33 1 0.57 <0.01 0 <0.01 0.39 <0.01 0 

Tabanidae DIN:VC 1006 0.26 2 0.6 0.01 0.78 <0.01 0 0.01 0.54 

Tanypodinae DIN 3326 0.22 1 0.53 0.08 0.26 <0.01 0 <0.01 0 

Tanytarsini DIN 2733 0.37 2.16 0.5 0.12 0.39 <0.01 0 <0.01 0 

Tanytarsus NULL 496 0.55 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Triplectides DIN:DRP 1291 0.27 7.25 0.66 0.05 0.77 0.05 0.79 <0.01 0 

Xanthocnemis NULL 586 0.34 0 0.5 <0.01 0 <0.01 0 <0.01 0 

Zelandobius DIN:VC 2299 0.21 2.08 0.54 0.04 0.46 <0.01 0 0.05 0.39 

Zelandoperla DIN:DRP 2007 0.67 2 0.66 0.07 0.98 0.07 0.92 <0.01 0 

Zephlebia DIN:DRP:VC 2219 0.92 9 0.61 0.06 0.44 0.04 0.36 0.08 0.92 
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Appendix E Partial plots of the taxa with the highest absolute 

sensitivity to each stressor 
a) DIN 

 



 

Development of macroinvertebrate response models for the FWMT  57 

 
b) DRP 
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c) VC 
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Appendix F Sensitivity of CTX,crit to different multi-stressor 

conditions 

Table F-1: Critical values of VC required to limit macroinvertebrate community extirpation to ≤1% (CT1,crit), 
≤2.5% (CT2.5,crit), ≤5% (CT5,crit) or ≤10% (CT10,crit), under different conditions of DIN and DRP.   All critical values 
are the medians estimated from 1000 realisations of the BEA algorithm for a particular set of DIN and DRP 
conditions. All values are equivalent to 12 monthly annual median exposures. Inf values indicate critical values 
that are beyond the domain of the data used. This means it is not possible to improve (increase) VC sufficiently 
to limit extirpation to that level given the values of DIN and DRP.  

DIN:DRP conditions Critical VC values required to limit macroinvertebrate extirpation 

DIN (mg/L) DRP (mg/L) VC CT1,crit (m) VC CT2.5,crit (m) VC CT5,crit (m) VC CT10,crit (m) 

0.03 0.006 3.4 1.8 1.1 0.7 

0.03 0.01 3 1.8 1.2 0.8 

0.03 0.018 2.4 1.9 1.5 1 

0.03 0.054 4.5 3.5 2.8 1.5 

0.24 0.006 2.9 1.9 1.2 0.8 

0.24 0.01 2.7 1.8 1.4 0.9 

0.24 0.018 2.7 2.2 1.7 1.1 

0.24 0.054 4.2 3.5 2.8 1.7 

1.3 0.006 6.2 4.1 2.7 1.5 

1.3 0.01 5.6 4.1 2.8 1.5 

1.3 0.018 5.2 4.1 2.8 1.6 

1.3 0.054 6.1 4.5 3.1 2.3 

2.2 0.006 Inf 5 3.5 1.7 

2.2 0.01 Inf 5 3.5 1.7 

2.2 0.018 6.3 4.9 3.6 1.9 

2.2 0.054 Inf 4.9 3.3 2.2 
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Table F-2: Critical values of DIN required to limit macroinvertebrate community extirpation to ≤1% 
(CT1,crit), ≤2.5% (CT2.5,crit), ≤5% (CT5,crit) or ≤10% (CT10,crit), under different conditions of VC and DRP.   All critical 
values are the medians estimated from 1000 realisations of the BEA algorithm for a particular pair of VC and 
DRP conditions. All values are equivalent to 12 monthly annual median exposures. -Inf values indicate critical 
values that are beyond the domain of the data used. This means it is not possible to improve (decrease) DIN 
sufficiently to limit extirpation to that level given the values of VC and DRP. 

VC:DRP constants Critical DIN values required to limit macroinvertebrate extirpation 

VC (m) DRP (mg/L) DIN CT1,crit (mg/L) DIN CT2.5,crit (mg/L) DIN CT5,crit (mg/L) DIN CT10,crit (mg/L) 

0.6 0.006 -Inf -Inf 0.36 1.09 

1.4 0.006 0.13 0.36 0.68 1.34 

2.2 0.006 0.29 0.51 0.85 1.49 

3 0.006 0.29 0.54 0.95 1.63 

0.6 0.01 -Inf -Inf 0.24 0.99 

1.4 0.01 0.02 0.24 0.57 1.22 

2.2 0.01 0.23 0.42 0.75 1.42 

3 0.01 0.24 0.48 0.85 1.57 

0.6 0.018 -Inf -Inf 0.07 0.74 

1.4 0.018 -Inf -Inf 0.38 1.08 

2.2 0.018 0.02 0.25 0.57 1.31 

3 0.018 0.18 0.37 0.64 1.47 

0.6 0.054 -Inf -Inf -Inf 0.24 

1.4 0.054 -Inf -Inf -Inf 0.74 

2.2 0.054 -Inf -Inf 0.22 1.25 

3 0.054 -Inf -Inf 0.37 1.49 
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Table F-3: Critical values of DRP required to limit macroinvertebrate community extirpation to ≤1% 
(CT1,crit), ≤2.5% (CT2.5,crit), ≤5% (CT5,crit) or ≤10% (CT10,crit), under different conditions of VC and DRP.   All critical 
values are the medians estimated from 1000 realisations of the BEA algorithm for a particular pair of VC and 
DIN conditions. All values are equivalent to 12 monthly annual median exposures. -Inf values indicate critical 
values that are beyond the domain of the data used. This means it is not possible to improve (decrease) DRP 
sufficiently to limit extirpation to that level given the values of VC and DIN. 

VC:DIN constants Critical DRP values required to limit macroinvertebrate extirpation 

VC (m) DIN (mg/L) DRP CT1,crit (mg/L) DRP CT2.5,crit (mg/L) DRP CT5,crit (mg/L) DRP CT10,crit (mg/L) 

0.6 0.03 0.002 0.007 0.012 0.031 

1.4 0.03 0.009 0.013 0.019 0.041 

2.2 0.03 0.013 0.02 0.033 0.051 

3 0.03 0.014 0.025 0.041 0.057 

0.6 0.24 -Inf 0.004 0.01 0.026 

1.4 0.24 0.006 0.012 0.019 0.036 

2.2 0.24 0.013 0.02 0.029 0.048 

3 0.24 0.016 0.026 0.038 0.055 

0.6 1.3 -Inf -Inf -Inf 0.012 

1.4 1.3 -Inf -Inf -Inf 0.027 

2.2 1.3 -Inf -Inf 0.008 0.048 

3 1.3 -Inf -Inf 0.018 0.058 

0.6 2.2 -Inf -Inf -Inf 0.009 

1.4 2.2 -Inf -Inf -Inf 0.031 

2.2 2.2 -Inf -Inf -Inf 0.049 

3 2.2 -Inf -Inf -Inf 0.055 
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Appendix G Tables of critical values of stressors required to meet 

macroinvertebrate targets for optimistic-pessimistic thresholds 

Table G-1: Critical values of DIN required to limit macroinvertebrate community extirpation to ≤1% 
(CT1,crit), ≤2.5% (CT2.5,crit), ≤5% (CT5,crit) or ≤10% (CT10,crit), for optimistic, median and pessimistic thresholds.   
Optimistic CTX,crit values assume that VC and DRP are currently at levels causing minimal to no extirpation of 
any taxon. Pessimistic CTX,crit values assume VC and DRP are currently at levels causing high community 
extirpation. Median CTX,crit values assume VC and DRP are currently at levels cause moderate community 
extirpation. -Inf values indicate critical values that are beyond the domain of the data used. This means it is not 
possible to improve (decrease) DIN sufficiently to limit extirpation to that level for a given scenario. 

 Critical DIN values required to limit macroinvertebrate extirpation 

Thresholds DIN CT1,crit (mg/L) DIN CT2.5,crit (mg/L) DIN CT5,crit (mg/L) DIN CT10,crit (mg/L) 

Optimistic 0.53 0.81 1.2 1.88 

Median 0.29 0.51 0.83 1.47 

Pessimistic 0.04 0.29 0.53 1.1 

Table G-2: Critical values of DRP required to limit macroinvertebrate community extirpation to ≤1% 
(CT1,crit), ≤2.5% (CT2.5,crit), ≤5% (CT5,crit) or ≤10% (CT10,crit), for optimistic, median and pessimistic thresholds of 
VC and DIN.   Optimistic CTX,crit values assume that VC and DIN are currently at levels causing minimal to no 
extirpation of any taxon. Pessimistic CTX,crit values assume VC and DIN are currently at levels causing high 
community extirpation. Median CTX,crit values assume VC and DIN are currently at levels cause moderate 
community extirpation. -Inf values indicate critical values that are beyond the domain of the data used. This 
means it is not possible to improve (decrease) DRP sufficiently to limit extirpation to that level for a given 
scenario. 

 Critical DRP values required to limit macroinvertebrate extirpation 

Thresholds DRP CT1,crit (mg/L) DRP CT2.5,crit (mg/L) DRP CT5,crit (mg/L) DRP CT10,crit (mg/L) 

Optimistic 0.023 0.028 0.035 0.051 

Median 0.014 0.021 0.027 0.04 

Pessimistic -Inf 0.013 0.021 0.031 

Table G-3: Critical values of VC required to limit macroinvertebrate community extirpation to ≤1% (CT1,crit), 
≤2.5% (CT2.5,crit), ≤5% (CT5,crit) or ≤10% (CT10,crit), for optimistic, median and pessimistic thresholds.   Optimistic 
CTX,crit values assume that DRP and DIN are currently at levels causing minimal to no extirpation of any taxa. 
Pessimistic CTX,crit values assume DRP and DIN are currently at levels causing high community extirpation. 
Median CTX,crit values assume DRP and DIN are currently at levels causing moderate community extirpation. -Inf 
values indicate critical values that are beyond the domain of the data used. This means it is not possible to 
improve (increase) VC sufficiently to limit extirpation to that level for a given scenario. 

 Critical VC values required to limit macroinvertebrate extirpation 

Thresholds VC CT1,crit (m) VC CT2.5,crit (m) VC CT5,crit (m) VC CT10,crit (m) 

Optimistic 1.4 1.1 0.9 0.6 

Median 1.9 1.5 1.2 0.8 

Pessimistic 3.2 2 1.5 1.1 
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Appendix H Taxon tolerance thresholds (TTcrit) to each stressor 

Table H-1: Taxon tolerance thresholds (TTcrit) to each stressor.   Values within cells of the first 9 columns 
show the median (Med), lower (L95), and upper (U95) 95% confidence interval of TTcrit (the value of a stressor 
at which the taxon is likely extirpated) estimated from the optimistic-pessimistic Monte-Carlo simulations. Taxa 
are ordered by their mean rank tolerance among all three stressors (final three columns). Tolerance values 
beyond the domain of the stressor are denoted as Inf or -Inf for nutrients and VC, respectively. This implies that 
the taxa are tolerant of higher nutrients, or lower VC than that simulated. 

 DIN TTcrit (mg/L) DRP TTcrit (mg/L) VC TTcrit (m) Rank tolerance 

Taxon Med L95 U95 Med L95 U95 Med L95 U95 DIN DRP VC 

Beraeoptera 1.02 0.08 2.4 0.024 0.006 0.068 1.17 0.33 2.25 5 1 2 

Nesameletus 0.5 0.11 2.69 0.025 0.008 0.059 0.45 0.31 1.7 1 2 22 

Neurochorema 1.99 0.49 2.69 0.032 0.012 0.064 1.12 0.34 2.05 17 5 5 

Aphrophila 1.4 0.74 2.69 0.026 0.015 0.05 0.55 0.31 1.41 8 4 17 

Olinga 2.12 1.04 2.7 0.048 0.022 0.07 1.15 0.38 1.99 19 13 4 

Psilochorema 2.2 1.03 2.69 0.034 0.019 0.068 0.79 0.32 1.7 22 7 10 

Costachorema 1.84 1.1 2.69 0.038 0.015 0.07 0.48 0.31 1.39 12 9 21 

Archichauliodes 1.88 0.84 2.69 0.048 0.023 0.071 0.5 0.31 1.38 15 13 20 

Hydrobiosis 2.36 1.44 2.7 0.043 0.024 0.07 0.58 0.31 1.4 26 11 16 

Austroclima 2.45 1.81 2.7 0.055 0.026 0.071 0.7 0.32 1.63 28 16 11 

Pycnocentrodes 2.7 2.52 Inf 0.056 0.026 0.07 0.79 0.31 1.58 32 18 10 

Zelandoperla 0.51 0.2 1.25 0.026 0.011 0.055 -Inf -Inf -Inf 2 4 104 

Coloburiscus 0.82 0.36 1.59 0.033 0.018 0.063 -Inf -Inf -Inf 4 6 104 

Eriopterini 0.67 0.27 1.25 0.038 0.02 0.068 -Inf -Inf -Inf 3 9 104 

Hydraenidae 1.56 0.45 2.62 Inf Inf Inf 1.15 0.43 1.78 9 104 4 

Austroperla 1.08 0.13 2.65 Inf Inf Inf 0.59 0.31 1.81 6 104 15 

Stenoperla 1.4 0.18 2.65 Inf Inf Inf 0.63 0.31 1.85 8 104 13 

Helicopsyche Inf Inf Inf 0.05 0.016 0.072 0.9 0.32 1.64 104 14 8 

Lymnaeidae 2.52 1.72 Inf Inf 0.068 Inf 1.36 0.36 3.2 31 104 1 

Tabanidae 2.04 0.51 2.7 Inf Inf Inf 0.62 0.31 1.72 18 104 14 

Atalophlebioides 1.88 0.72 2.69 0.059 0.024 0.072 -Inf -Inf -Inf 15 19 104 

Aoteapsyche 1.93 1.38 2.69 0.06 0.024 0.072 -Inf -Inf -Inf 16 21 104 

Zelandobius 2.19 1.14 2.7 Inf Inf Inf 0.52 0.31 1.47 20 104 18 

Deleatidium 2.36 1.18 2.72 0.054 0.028 0.071 -Inf -Inf -Inf 26 15 104 

Elmidae 2.3 0.78 2.72 0.056 0.023 0.071 -Inf -Inf -Inf 23 18 104 

Empididae 2.2 1 2.7 0.06 0.034 0.072 -Inf -Inf -Inf 22 21 104 

Latia 2.32 1.2 2.7 0.066 0.043 0.072 -Inf -Inf -Inf 24 22 104 

Plectrocnemia Inf Inf Inf Inf Inf Inf 0.99 0.35 2 104 104 6 

Scirtidae Inf Inf Inf Inf Inf Inf 0.93 0.33 2.1 104 104 7 

Mischoderus 1.6 0.48 2.69 Inf Inf Inf -Inf -Inf -Inf 10 104 104 

Orthocladiinae Inf Inf Inf 0.042 0.01 0.071 -Inf -Inf -Inf 104 10 104 
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 DIN TTcrit (mg/L) DRP TTcrit (mg/L) VC TTcrit (m) Rank tolerance 

Taxon Med L95 U95 Med L95 U95 Med L95 U95 DIN DRP VC 

Berosus 1.79 0.73 2.65 Inf Inf Inf -Inf -Inf -Inf 11 104 104 

Chironomidae Inf Inf Inf Inf Inf Inf 0.68 0.33 1.39 104 104 12 

Molophilus 1.85 0.65 2.69 Inf Inf Inf -Inf -Inf -Inf 13 104 104 

Platyhelminthes Inf Inf Inf Inf Inf Inf 0.5 -Inf 1.38 104 104 20 

Austrosimulium Inf Inf Inf 0.068 0.048 0.072 -Inf -Inf -Inf 104 23 104 

Pycnocentria Inf Inf Inf 0.07 0.06 Inf -Inf -Inf -Inf 104 24 104 

Tanypodinae 2.43 1.66 2.72 Inf Inf Inf -Inf -Inf -Inf 27 104 104 

Ptilodactylidae 2.46 1.47 2.72 Inf Inf Inf -Inf -Inf -Inf 29 104 104 

Ameletopsis 2.52 1.77 2.72 Inf Inf Inf -Inf -Inf -Inf 31 104 104 

Acanthophlebia Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Acarina Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Acroperla Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Amphipoda Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Ceratopogonidae Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Chironomus Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Cladocera Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Collembola Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Confluens Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Copepoda Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Dytiscidae Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Ephydridae Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Ferrissia Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Gyraulus Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Hexatomini Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Hirudinea Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Hudsonema Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Hydra Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Hydrobiosella Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Hydrochorema Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Hydrophilidae Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Hygraula Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Ichthybotus Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Isopoda Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Maoridiamesa Inf Inf Inf Inf 0.068 Inf -Inf -Inf -Inf 104 104 104 

Mauiulus Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Megaleptoperla Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Microvelia Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Muscidae Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 
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 DIN TTcrit (mg/L) DRP TTcrit (mg/L) VC TTcrit (m) Rank tolerance 

Taxon Med L95 U95 Med L95 U95 Med L95 U95 DIN DRP VC 

Nematoda Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Nematomorpha Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Nemertea Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Neozephlebia Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Nothodixa Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Oecetis Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Oeconesidae Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Oligochaeta Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Orthopsyche Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Ostracoda Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Oxyethira Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Paracalliope Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Paradixa Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Paraleptamphopus Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Paralimnophila Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Paranephrops Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Paratya Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Paroxyethira Inf 2.5 Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Philorheithrus Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Physa Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Polychaeta Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Polyplectropus Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Potamopyrgus Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Psychodidae Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Rallidens Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Sigara Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Sphaeriidae Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Staphylinidae Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Stictocladius Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Stratiomyidae Inf Inf Inf Inf 0.069 Inf -Inf -Inf -Inf 104 104 104 

Tanytarsini Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Tanytarsus Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Triplectides Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Xanthocnemis Inf Inf Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 

Zephlebia Inf 2.62 Inf Inf Inf Inf -Inf -Inf -Inf 104 104 104 
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Appendix I MIM residual diagnostic plots 

  

Figure I-1: Residual diagnostic plots for the final MCI MIM.  



 

Development of macroinvertebrate response models for the FWMT  67 

  

Figure I-2: Residual diagnostic plots for the final QMCI MIM.  
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Figure I-3: Residual diagnostic plots for the final ASPM MIM.  

 


